Удовольствие от Х (Строгац) - страница 22

Несколько лет назад моя дочь Джо поняла зависимость между числами, выражающими ее возраст и возраст ее старшей сестры Лии23. Она мне сказала: «Папа, смотри, всегда есть число между моим возрастом и возрастом Лии. Вот сейчас мне шесть лет, а Лии восемь, а семь находится посередине. И даже когда мы станем старше — мне исполнится двадцать, а ей двадцать два года, — посередине по-прежнему будет число!»

Рассуждения Джо — пример алгебраического подхода (хотя никто, кроме гордого отца, возможно, этого и не видит). Она подметила соотношение между двумя постоянно меняющимися переменными: своим возрастом, x, и возрастом Лии — y. Лия всегда будет на два года старше сестры: y = x + 2.

На языке алгебры такие задачи формулировать естественнее всего. Но потребуется небольшая практика, чтобы хорошо разобраться в этой науке, потому что существуют, как говорят французы, faux amis, то есть ложные друзья: пары слов, звучащие похоже и вроде бы означающие одно и то же, но на самом деле имеющие совершенно различные значения.

Предположим, что длина коридора равна y, если ее измерять в ярдах, и f, если мы ее измерим в футах. Составьте уравнение, описывающее отношение между y и f.

Мой друг Грант Виггинс, эксперт по вопросам образования, уже много лет предлагает такое задание студентам и университетским преподавателям. Основываясь на своем опыте, он утверждает, что студенты более чем в половине случаев выполняют его неправильно, даже если совсем недавно прошли и успешно сдали курс алгебры.

Если вы тоже думаете, что ответ — y = 3f, добро пожаловать в клуб неудачников.

Эта формула похожа на «дословный перевод» утверждения «Один ярд равняется трем футам» на язык алгебры. Но как только вы попробуете подставить в уравнение несколько чисел, то сразу увидите, что в нем все перевернуто с ног на голову. Скажем, коридор имеет длину 10 ярдов, то есть 30 футов. Тогда при y = 10 ярдам, понятно, что f = 30 футам, и тождество становится неверным.

Верное уравнение: f = 3y. И здесь 3 действительно означает, что в одном ярде 3 фута (то есть имеет размерность фут/ярд). Когда вы умножите 3 на переменную y в ярдах, то ярды в уравнении сократятся, и у вас останутся, как и должно быть, футы.

Проверка правильности формулы с помощью сокращения единиц измерения помогает избежать грубой ошибки такого типа. Например, она могла бы спасти сотрудников отдела обслуживания клиентов компании Verizon (см. пример в главе 5) от путаницы между долларами и центами.

Еще один вид формул называется тождеством. Когда на уроках алгебры вы раскладывали на множители или перемножали многочлены, вы работали с тождествами. Можете использовать их и теперь, чтобы произвести впечатление на друзей дешевыми трюками с числами. Вот один, который поразил физика Ричарда Фейнмана[8], хотя он сам неплохо считал устно.