Гравитация. От хрустальных сфер до кротовых нор (Петров) - страница 125

Теперь приведем простые примеры излучающих систем. Рассмотрим два тела одинаковой массы m и незначительных габаритов, соединенные пружинкой длины l. Выберем направление одной из осей координат, скажем 0х, вдоль пружины, а середину пружины – за начало координат. У такой системы будет единственная независимая ненулевая компонента D. В состоянии покоя это D>xx= ml>2. Через нее определяются D>yy = D>zz = —D>xx/2. Теперь заставим грузы колебаться относительно своих положений равновесия с амплитудой L и частотой. Тогда компоненты квадрупольного момента станут переменными:

D>хх (t) = ml>2 + 4mL (l cos ωt + L cos>2ω t).


Соотношение D>yy = D>zz = —D>xx/2 сохранится. Производная по времени третьего порядка этих величин ненулевая, значит, система излучает гравитационные волны.

Другой пример ближе к жизни, и мы рассмотрим его подробнее. Пусть две звезды одинаковой массы m, вращаются по одной и той же окружности вокруг общего центра масс. Они все время находятся друг против друга на расстоянии 2R (рис. 10.3). Пусть плоскость орбиты совпадает с плоскостью x0y, а угловая частота вращений равна ω, она связана с орбитальным периодом как T = 2π/ω. Тогда ненулевыми компонентами квадрупольного момента являются:

D>xx = 2mR>2 (3 cos>2ωt – 1), D>yy = 2mR>2 (3 sin>2 ωt – 1),


D>xy = 3mR>2 sin2ωt, D zz = – 2mR>2

Рис. 10.3. Модель двух звезд


Начальное состояние соответствует t = 0, массы расположены на оси 0x. В данный момент компоненты квадруполя будут такими же, как в модели с пружинкой, т. е. независимой является только одна компонента.

Конечно, и такая система должна излучать. Поскольку движение обусловлено гравитационным взаимодействием, то и R связаны уравнением m>2R = Gm>2/4R>2. Тогда, после усредненияя по периоду и представления через R, мощность гравитационного излучения выражается формулой:

Система излучает тем интенсивнее, чем меньше R (или чем больше частота вращения, как следует из их уравнения связи).

Чтобы проиллюстрировать насколько мало гравитационное излучение, приведем следующий пример. В Солнечной системе, наибольшая мощность гравитационного излучения возникает в паре Солнце + Юпитер. Это излучение можно рассчитать по аналогичной формуле. В результате получим примерно 5 кВт (это всего лишь мощность пяти больших бытовых кипятильников советских времен). Энергия, теряемая Солнечной системой на гравитационное излучение за год, совершенно ничтожна по сравнению с кинетической энергией этих тел.

Необходимо сказать несколько слов о направленности гравитационного излучения. В случае с грузами на пружинке по ее оси вообще нет излучения, а максимум – в направлении перпендикулярном пружинке. В случае кругового движения интенсивность излучения в направлении перпендикулярном плоскости орбиты в несколько раз больше, чем в направлениях, лежащих в плоскости. Связаны эти особенности с тем, что излучаемая гравитационная волна является поперечной.