Гравитация. От хрустальных сфер до кротовых нор (Петров) - страница 71

, – это масса тела M, обращение в нуль этого параметра превращает решение Шварцшильда в метрику плоского мира.

Классические тесты теории Эйнштейна

Радостные новости сегодня! Лоренц телеграфировал мне, что английская экспедиция доказала отклонение лучей света вблизи Солнца.

Альберт Эйнштейн в письме матери

Теперь мы во всеоружии, чтобы перейти к классическим тестам, подтвердившим ОТО. Уже в 1915 году, сразу после опубликования своих уравнений, Эйнштейн назвал три эксперимента, результаты которых должны соответствовать выводам новой теории.

Первый из этих экспериментов – отклонение луча света в гравитационном поле массивного тела. Из-за слабости эффекта в роли массивного тела в то время могло выступить только Солнце. А отклонять оно может свет далекой звезды, координаты которой известны достаточно точно.

Второй эксперимент – смещение перигелиев планет. Мы уже говорили об аномальном смещении перигелия Меркурия, о котором было известно с середины XIX века.

Третий эксперимент – эффект гравитационного красного смещения. Его суть в том, что электромагнитное излучение, испущенное из окрестности гравитируещего тела, должно терять энергию. Это выражается в том, что частота сигнала уменьшается, то есть его спектр смещается в красную сторону. Для точного теоретического описания этих эффектов как раз было необходимо решение Шварцшильда, которое не замедлило появиться, как мы уже отметили и только что представили.

Отклонение луча звезды в гравитационном поле Солнца. Начнем с отклонения света и истории обсуждения проблемы, начавшейся задолго до релятивистской эпохи. Известно, что отклонение лучей света от прямой линии обсуждалось после создания Ньютоном классической механики, и как части ее – оптики. Сам Ньютон был убежденным сторонником корпускулярной теории света. А раз так, то «световые частицы» должны двигаться в поле тяготеющего центра точно так же, как и всякие другие тела – по линиям конического сечения. Поскольку скорость света Ньютону уже была известна (она очень большая по сравнению со скоростью планет), то траектории «световых частиц» должны быть скорее гиперболическими. Ньютону было известно, конечно, как вычислять угол между асимптотами, см. рис 7.1. Поэтому очень вероятно, что Ньютону была известна формула типа α = 2GM/c>2R. Она как раз определяет угол отклонения в поле тела массы M частицы, движущейся со скоростью света на расстоянии R от тела. Скорее всего ему была известна также величина отклонения луча света вблизи поверхности Солнца, поскольку все необходимые значения констант ко времени опубликования «Начал» были известны. Однако часто Ньютон не публиковал результаты, а форма представления их была очень сложной. Поэтому не известно наверняка, что Ньютон эту формулу выписывал. Кроме того, по тем временам не представлялось возможным измерить это отклонение света в поле Солнца, что могло поубавить заинтересованность в проблеме.