Зададимся вопросом: что произойдет, если, сохраняя массу, взять тело меньшего радиуса, и, соответственно, меньшего объема? При несущественном сжатии ничего особенного не произойдет. Внешнее искривленное пространство-время будет представлено все тем же решением Шварцшильда. Если кто-то очень сильный «уплотнит» Солнце, сожмет его в несколько раз, сохраняя сферическую симметрию, то это никак не повлияет на движение планет – они будут двигаться по тем же орбитам. Обсуждая черные дыры Мичелла-Лапласа, мы отметили, что вторая космическая скорость тем больше, чем меньше радиус тела при той же массе. Поэтому, стремясь увеличить вторую космическую скорость, давайте, мысленно (пренебрегая реальными условиями состояния вещества) уменьшать радиус тела, сохраняя массу.
До каких пор интересно продолжать этот мысленный процесс? Как видно, при r = r>g решение Шварцшильда перестает быть регулярным: коэффициент временной части обратится в нуль, а пространственной, наоборот, – в бесконечность! Может r = r>g это как раз тот размер объекта, когда вторая космическая скорость равна скорости света? Поэтому, давайте, продолжим мысленное сжатие, пока все вещество не станет сосредоточено в сфере, меньшего радиуса, чем гравитационный r>g.
Напомним, что гравитационный радиус пропорционален массе тела. Сжатая до гравитационного радиуса Земля была бы горошиной диаметром 1,6 см, а Солнце – шаром диаметром 6 км. После такого сжатия область в окрестности сферы радиуса r>g и все остальное пространство станут вакуумными. Это дает возможность без помех исследовать распространение сигналов вдали от объекта и вблизи r>g, к чему мы и переходим.
Сначала разумно вернуться к «эйнштейновским» эффектам, которые мы уже обсудили в окрестности «обычных» небесных тел, таких как Солнце. Приближение к области в окрестности гравитационного радиуса делает их проявление чрезвычайно выраженным и даже парадоксальным.
Начнем с отклонения луча света. То, что с приближением к сфере радиуса r>g угол отклонения луча будет увеличиваться – вполне ожидаемо. Но до какой степени возможно это отклонение? Оказывается, при достаточном приближении луч может обогнуть объект и уйти в обратном направлении. Далее, если он будет проходить на расстоянии полутора r>g от центра, то угол отклонения станет полным оборотом. То есть в этом случае луч света начнет вращаться по круговой орбите! В отличие от орбит планет, эта орбита неустойчива – после любого незначительного возмущения луч либо покинет объект, либо «свалится» в него. Если продолжить процедуру и еще приблизить луч к центру, то его траектория превратится в спираль, и он будет захвачен объектом.