0.
Мы видим, что под горизонтом нет препятствий для движения частиц, хотя и выглядит это несколько необычно. С другой стороны, сигналы извне не могут преодолеть горизонт. Происходит разрыв мировых линий световых лучей и падающих частиц. Самое время обсудить особенность на горизонте. Попытаемся понять, что на горизонте и в его окрестности происходит в реальности.
Придется вернуться к истокам ОТО и вспомнить, что основной характеристикой пространства-времени является его искривление (кривизна), которое определяется тензором кривизны Римана. Но вычисление компонент тензора Римана на горизонте и в его окрестности ничего необычного не обнаруживает. До горизонта, на горизонте и под ним кривизна не испытывает никаких разрывов, ведет себя вполне плавно, постепенно увеличиваясь по мере приближения к центру. Дело в том, что координаты удаленного наблюдателя (а это координаты плоского пространства-времени), в которых и записано решение Шварцшильда, не вполне годятся для описания явлений в окрестности горизонта. Это значит, что нужно найти координаты, которые не имели бы этого дефекта.
Вспомним, что истинное время каждого наблюдателя для него самого всегда имеет одно и то же течение, в том числе и совсем близко к горизонту. А возможно, и на горизонте, почему нет? Поэтому в искомых координатах можно использовать собственное время свободно падающих (сопутствующих) наблюдателей как новую временную координату. Такие координаты для решения Шварцшильда, свободные от дефектов на горизонте, предложил в 1938 году бельгийский астроном и математик Жорж Леметр (1894–1966). В его сопутствующей системе отсчета мировые линии частиц и световых лучей перестают испытывать разрыв на горизонте – они его свободно пересекают. Диаграмма в координатах Леметра обсуждается в Дополнении 5.
Что же испытают наблюдатели, минуя горизонт? Все зависит от кривизны этого горизонта. Если черная дыра огромная, то локально горизонт довольно плоский, и наблюдатель никак не отреагирует на его пересечение. Если уменьшать черную дыру, то в определенный момент наблюдатель начнет ощущать действие приливных сил. Его начнет «растягивать» по радиусу и «обжимать» с боков. Но эти явления могут начаться и до достижения горизонта, они с ним не связаны. Ключевым моментом является следующее. Оказавшись под горизонтом, наблюдатель имеет возможность получить сигнал из внешнего мира, но не имеет возможности послать сигнал наружу.
Наконец, обсудим особенность в «центре» r = 0. Пока мы получили ее, проводя мысленный эксперимент. А может ли такая особенность образоваться в реальности? Снова вернемся к примеру с «обычным» телом, который обсуждался в начале этой главы. Такой объект описывается внутренним решением, которое статично, не имеет особенностей и «сшивается» с внешним решением Шварцшильда. Внутреннее решение получено с учетом уравнения состояния вещества тела. В этом случае уравнение состояния определяет такое давление, что оно противостоит гравитационному сжатию. Именно поэтому объект статичен. Всегда ли это возможно? Забегая вперед, где эта проблема обсуждается, скажем: нет, не всегда. Если масса тела равна или превышает пять солнечных масс, то