Музыкальные инструменты и ряд Фурье
Как правило, мы способны отличить звук флейты от звука скрипки, даже если на них сыграть одну и ту же ноту, например, до первой октавы, которая имеет частоту 261,6 Гц. На языке музыки говорится, что эти звуки имеют разный тембр, однако их тон (частота) и сила одинаковы. На рисунке вы можете сравнить звук флейты и скрипки (выделен серым) при исполнении одной и той же ноты. На графике представлена кривая, описывающая чистый звук (выделена черным), издаваемый камертоном, настроенным на ноту до первой октавы.
Как видите, звук флейты достаточно схож с чистым звуком, полученным с помощью камертона, – не случайно звучание флейты считается наиболее чистым, в то время как звук скрипки сложнее. В звуковых волнах, синтезируемых инструментами, содержатся обертоны, частоты которых кратны частоте основного звука. Определение интенсивности обертонов называется анализом Фурье.
Гейзенберг решил: чтобы описать эквивалентную величину в квантовой механике, одного целого числа будет недостаточно, так как наблюдаемые частоты соответствуют переходу между двумя квантовыми состояниями. Для простоты будем описывать каждое состояние единственным квантовым числом п. Следовательно, эквивалентом классического ряда Фурье будет сумма с двумя индексами – двойная сумма членов вида x>mn(t). Иными словами, чтобы определить положение электрона в произвольней момент времени, нужно составить для каждого момента времени таблицу чисел. Количество ее строк и столбцов будет равно количеству состояний атома. Гейзенберг также предположил, что эта новая квантовая величина должна описываться теми же уравнениями, что и ее аналог в классической физике – например, законом Ньютона, согласно которому сила равна произведению массы на ускорение, или любой другой эквивалентной формулировкой. В простых случаях Гейзенбергу удалось получить выражения для расчета амплитуд, соответствующих величинам x>mn(t), а также для вычисления энергии стационарных состояний.
Новая модель выглядела непротиворечивой, однако ученый все еще не был в ней уверен – в этой модели предполагалось, что существует некое странное свойство, связанное с произведениями двух величин, x(t) и y(t). Как представить таблицу для произведения чисел через таблицы чисел для каждого множителя? Гейзенберг сделал это так:
[x(t)y(t)]>mn =x>m1(t)y>1n(t) +x>m2(t)y>2n(t) +x>m3(t)y>3n(t) +…
Согласно его гипотезе, «в то время как в классической теории x(t)y(t) всегда равно y(t)x(t), это соотношение необязательно выполняется в квантовой теории». Несмотря на всю странность этого вывода, Гейзенберг решил изложить свои идеи, расчеты и результаты письменно. Он передал рукопись Борну и попросил опубликовать ее, если тот будет согласен с написанным. После этого молодой ученый сразу же отправился в далекий путь: его ждали конференции в Голландии и Англии, отпуск в Скандинавии в компании скаутов и продолжение работы в Копенгагене.