Три точки с разными координатами широты и долготы на двух проекциях Земли. На плоской проекции (вверху) мы получаем обычный треугольник, в то время как на сферической проекции (внизу) мы получаем сферический треугольник.
От Марра Mundi до Google™ Планета Земля
Традиционный глобус Земли, используемый сегодня во многих школьных классах, представляет собой сферу с сеткой координатных линий, представляющих меридианы и параллели планеты. Очень часто в классах также имеется карта мира с линиями, напоминающими декартовы координаты.
Вертикальные линии показывают долготу. Слева от начала координат — западная долгота, справа — восточная долгота.
Горизонтальные линии указывают широту; вверх от начала координат — северная широта, вниз — южная. На предыдущей странице изображен один и тот же регион мира на двух типах карт. На первом рисунке меридианы и параллели — прямые линии, а на втором они искривлены.
Как найти кратчайшее расстояние между Барселоной и Токио?
На карте мира мы видим, что Барселона находится в точке с координатами 2° восточной долготы и 41° северной широты, а Токио — около 140° восточной долготы и 36° северной широты. Рассмотрим сферический треугольник с вершинами А (Барселона), В (Токио) и D (Северный полюс).
Обозначим буквой d геодезическую линию, соединяющую Барселону и Токио. Длина d и будет минимальным расстоянием между двумя городами. Для вычисления этой длины мы используем теорему косинусов для сферических треугольников:
cosd = cosa · cosb + sina · sinb · cosD.
Чтобы найти d, мы должны знать величины сторон а и b и угла D. Чтобы вычислить длину стороны сферического треугольника, возьмем экватор за горизонтальную ось и вычтем из 90° широту каждой точки. Для нахождения угла D мы поступаем аналогично, на этот раз беря в качестве оси координат Гринвичский меридиан:
а = 90°- 41° = 49°
Ь = 90–36° = 34°
D = 140°- 2° = 138°.
Подставляя эти значения в теорему косинусов и используя калькулятор, получим:
cos (d) = cos(49°)·cos(54°) + sin(49°)·sin(54°)·cos(138°) =
= 0,656059029·0,5877852523 + 0,7547095802·0,809016944·(-0,7431448255) =
= -0,06812225162.
Используя клавишу cos>-1, мы найдем расстояние d: 93,90614266°.
Однако, было бы более полезно определить это расстояние в километрах. Учитывая, что радиус Земли составляет 6350 км, длина окружности большого круга на поверхности земного шара может быть вычислена по формуле:
2·π·R = 2·π·6350 = 39 898,23 км.
Таким образом, длина 39898,23 км соответствует полному кругу в 360°. Остается узнать, скольким километрам соответствует угол в 93,90614266°.