Трехмерный мир. Евклид. Геометрия (Каррера) - страница 24

Но иногда Евклид прибегает и к косвенному методу доведения до абсурда. Этот способ заключается в постулировании утверждения, обратного тому, которое требуется доказать, — здесь Евклид и читатель должны быть согласны друг с другом. Путем рассуждений мы приходим одновременно к некоему предложению и к его отрицанию, то есть к неприемлемому результату. Следовательно, исходное утверждение оказывается неверным, а обратное ему, которое и требовалось доказать, истинно. Здесь кроется логический принцип, который Евклид нигде не объясняет отдельно: из двух обратных друг другу утверждений — когда одно является отрицанием другого — одно обязательно будет верным, а другое ложным. Хотя Евклид и никогда не описывал метод доведения до абсурда, он часто прибегал к нему. Этот метод доказательства по своему существу можно считать аристотелевским; его с трудом можно вписать в анализ, скорее он лежит в области синтеза.

Фрагмент папируса с рисунком, иллюстрирующим предложение 5 книги II Евклида, найденный при раскопках Оксиринха (Пемжде), древнего города в 160 км от Каира.


Изложение в рисунках первого предложения книги I. Оливье Бирн(1810- 1890).


АРИСТОТЕЛЬ И ИРРАЦИОНАЛЬНОСТЬ √2

Для доказательства того, что не существует ни одного числа, которое в квадрате было бы равно двум, философ использовал метод доведения до абсурда.

Нет причин для существования числа, квадрат которого был бы равен 2.

На современном языке это означает, что квадратный корень из числа 2 — иррациональное число. Аристотель сначала принимает истинным противоположный постулат о том, что это число рациональное, и приходит к заключению: в таком случае «четное число одновременно есть также и нечетное», а это невозможно. Запишем его рассуждения в современном виде.

Предположим (дополнительная гипотеза), что

2 = m²/n²

где m и n — два числа разной четности. Следовательно, 2n = m. Тогда, если m — четное число (то есть m = 2m'), то n — нечетное. Следовательно, 2n = 4m'. То есть n = 2m', и n — четное.


Теперь рассмотрим еще один пример, который показывает, что, используя метод доведения до абсурда, Евклид прибегал к идеальным математическим объектам. Как мы уже сказали, при доказательстве необходимо установить, что построенные математические объекты правильны. Тем не менее метод доведения до абсурда предполагает, что в начале допускается существование неких математических объектов, как если бы они были реальными. Потом доказывается, что эта предпосылка ошибочна, то есть требуется построение объектов, которые не могут быть построены.