У интуиции есть своя логика. Гёдель. Теоремы о неполноте (Пиньейро) - страница 29

Использовали равенство а + а = 2 · а.
9.1 = 2Разделили обе части на число а.

Очевидно, что это рассуждение неверно, но где ошибка? Она находится в переходе от шага 5 к шагу 6. В равенстве

а · (b - а) = (b + а) · (b - а)

мы сокращаем скобки (b - а) и делаем вывод, что а = b + а. Это ошибочно, потому что (b - а) равно 0 (поскольку а = b), а 0 нельзя делить. Если представить это в виде чисел и предположить, например, что а и b равны 2, переход от 5 к 6 соответствует тому, чтобы сказать, что из 2 · 0 = 4 · 0 (что истинно) следует 2 = 4.

Но как мы можем научить компьютер обнаруживать ошибки такого типа? Компьютер — это только машина; он не рассуждает, а слепо следует программе, записанной в его памяти. Для того чтобы компьютер мог проверить правильность математического рассуждения, необходимо перевести это рассуждение в последовательность высказываний, каждое из которых либо аксиома, либо выводится из предыдущих высказываний посредством применения точных и заранее установленных логических правил.

Рассмотрим пример математического доказательства, выраженного таким образом. Для начала нам нужны некоторые аксиомы, которые будут служить нам отправной точкой. В 1889 году, задолго до открытия парадокса Рассела, итальянский математик Джузеппе Пеано предложил набор аксиом, которые (как он предполагал) позволяют доказать все арифметические истины. Эти аксиомы основывались на операциях сложения (+), произведения (·), а также понятии последующего элемента (обозначаемого буквой S).

Пеано понимал, что последовательность натуральных чисел получается на основе числа 1 посредством повторного применения функции последующего элемента. Таким образом, 2 определяется как последующий элемент для 1, что обозначается S (1) = 2; 3, по определению, — последующий элемент для 2, то есть S (2) = 3; и так до бесконечности.

Для нашего примера достаточно взять две аксиомы Пеано, относящиеся к сложению.

Аксиома 1: каким бы ни было число х, х + 1 = S(x).

Аксиома 2: какими бы ни были числа х и у, S(x + у) = х + S(у).

В первой аксиоме говорится, что последующий элемент числа х всегда получается прибавлением к нему 1. Вторую аксиому можно воспринимать как (x+y) + 1 = x + (y +1). На основе этих двух аксиом докажем, что 4 = 2 + 2.

Логическая структура доказательства того, что 4*2 + 2. Стрелки показывают применения правил вывода.


Но действительно ли нужно доказывать, что 4 = 2 + 2? Разве это не очевидный факт? Хотя это действительно очевидно, по программе Гильберта любое истинное утверждение, не являющееся аксиомой, должно доказываться на их основе. За исключением высказываний, которые явно указаны как аксиомы, нет других утверждений, которые сами по себе считаются истинными.