Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса (Ливио) - страница 116

.

Исторически математика и логика были совершенно различными дисциплинами. Математика была связана с наукой, а логика с греками. Но обе стали развитыми дисциплинами только в последнее время: логика стала более математической, а математика стала более логической. Как следствие этого, сейчас [в 1919 году] невозможно провести между двумя дисциплинами разделительную линию. На самом деле обе представляют собой нечто единое. Они отличаются так же, как мальчик и мужчина: логика есть юность математики, а математика есть зрелость логики. (Здесь и далее цитаты из «Введения в философию математики» Б. Рассела даны в пер. В. Целищева.)

Здесь Рассел утверждает, что, в сущности, математику можно свести к логике. Иначе говоря, основные понятия математики, даже такие объекты, как, например, числа, можно на самом деле определить в терминах фундаментальных законов рассуждения. Более того, впоследствии Рассел утверждал, что можно сочетать такие определения с логическими принципами – и породить математические теоремы. Первоначально такое представление о природе математики (так называемый логицизм) пользовалось благосклонностью как тех, кто считал математику не более чем сложной игрой, целиком и полностью изобретенной людьми (то есть формалистов), так и обеспокоенных платоников. Первые поначалу обрадовались, когда увидели, как собрание не связанных друг с другом на первый взгляд «игр» объединяется в одну «праматерь всех игр». Последние увидели луч надежды в идее, что вся математика, вероятно, коренится в одном источнике, в котором можно не сомневаться. В глазах платоников это повышало шансы на существование единого метафизического источника. Нечего и говорить, что единый корень математики мог, по крайней мере, в принципе, подсказать, в чем причина ее могущества.

Для полноты картины отмечу, что была еще одна школа мысли под названием интуиционизм, которая всячески противостояла и логицизму, и формализму. Вдохновителем этой школы был голландский математик Лёйтзен Э. Я. Брауэр (1881–1966), отличавшийся некоторым фанатизмом[119]. Брауэр был убежден, что натуральные числа выведены из интуитивных представлений человека о времени и дискретных моментах нашего опыта. С его точки зрения вопрос о том, что математика есть результат человеческой мысли, решался однозначно, поэтому он не видел никакой необходимости в универсальных логических законах наподобие тех, которые представлял себе Рассел. Однако Брауэр пошел гораздо дальше и объявил, что единственные осмысленные математические сущности – это те, которые можно эксплицитно построить на основе натуральных чисел посредством конечного числа шагов. Поэтому он отвергал огромные области математики, для которых были невозможны конструктивные доказательства. Брауэр отвергал и другое логическое понятие –