(рис. 1.3). Находящиеся в этой зоне электроны могут свободно перемещаться под влиянием электрического поля.
Это твердое тело (металл), проводящее электрический ток по принципу движения свободных электронов. С ростом температуры проводимость металлов убывает, а при очень низких температурах (близких к 0 К) становится очень большой (сверхпроводимость).
По структуре кристаллической решетки и диаграмме энергетических уровней проводник является телом, в котором зоны проводимости и валентная перекрываются (рис. 1.4).
Рис. 1.4.Зонная модель проводника
Благодаря этому в кристаллической решетке существует высокая концентрация электронов, образующих так называемый электронный газ, который может свободно перемещаться в объеме металла под воздействием внешнего электрического поля.
Хорошими проводниками электрического тока являются медь, серебро, золото. Медь нашла широкое применение в виде проводников или соединений на печатных платах. Серебро, а особенно золото, из-за высокой стоимости используют значительно реже.
Основным параметром, определяющим проводник, является его электрическое сопротивление, выражающееся отношением падения напряжения на проводнике к протекающему по нему току. Хороший проводник оказывает малое сопротивление протеканию тока.
Электрическое сопротивление — параметр, зависящий от температуры.
Это тело, не проводящее электрический ток. Внутренняя структура диэлектрика (или изолятора) характеризуется полностью заполненной электронами валентной зоной и незаполненной зоной проводимости. Между зонами располагается широкая запрещенная зона (рис. 1.5), так что при нормальных условиях электроны не могут переходить из валентной зоны в зону проводимости. Из-за отсутствия электронов в зоне проводимости диэлектрик не может проводить ток.
Pиc. 1.5.Зонная модель диэлектрика
Диэлектрики широко применяют в электронике. Они служат основным материалом в производстве конденсаторов (слюда, керамика, стекло, пленка, бумага и различные окислы, например, тантала). Диэлектрики используют в качестве изоляционного материала для покрытия проводов (изоляционная эмаль), изготовления каркасов катушек индуктивности (бакелит, керамика) и трансформаторов.
Свойства диэлектрика характеризуются диэлектрической проницаемостью, потерями, теплостойкостью, гигроскопичностью. Потери являются частотно-зависимым параметром.
Это тело, свойства которого, если речь идет о протекании тока могут подвергаться изменению в зависимости от условий. Протекание тока в полупроводнике может происходить на основе движения отрицательных (электронов) и положительных зарядов. Проводимость полупроводников увеличивается с ростом температуры. При очень низких температурах полупроводники ведут себя, как диэлектрики.