Поскольку в многообразии, типа однородной протяженности, деление может продолжаться так долго, как мы хотим, причем в постоянном объекте ничего не меняется; либо же величины могут меняться без какого-то иного результата, нежели увеличение или уменьшение пространства, кое они рифлят. Итак, Бергсон высвободил «два совершенно разных типа многообразий», одно — качественное, расплавленное и непрерывное; другое — числовое, однородное и дискретное. Отметим, что
материя движется назад и вперед между этими двумя многообразиями; иногда она еще свернута в качественном многообразии, иногда уже развернута в метрической «схеме», выталкивающей ее вовне ее самой. Противостояние между Бергсоном и Эйнштейном по поводу теории относительности остается непонятым, если не переносится в контекст базовой теории римановских многообразий, как ее модифицировал Бергсон.
Мы уже не раз имели возможность столкнуться со всякого рода различиями между двумя типами многообразий — метрическое и неметрическое; экстенсивное и качественное; центрированное и а-центрированное; древесное и ризоматическое; числовое и плоское; наделенное измерениями и наделенное направлениями; многообразие массы и многообразие стаи; величины и дистанции, купюры и частоты; рифленое и гладкое. Не только то, что населяет гладкое пространство — а именно, многообразие — меняет природу, разделяясь, как племена в пустыне: дистанции, которые все время модифицируются, стаи, непрестанно подвергающиеся метаморфозам, но и само гладкое пространство — пустыня, степь, море или лед — является многообразием такого типа, не метрическим, а-центрированным, направленным и т. д. Итак, можно было бы подумать, будто Число принадлежит исключительно другим многообразиям, что оно сообщает им научный статус, коего лишены неметрические множества. Но это верно лишь отчасти. Верно, что число — коррелят метрики: величины могут рифлить пространство только благодаря отсылке к числам, и наоборот, числа используются для выражения все более и более сложных отношений между величинами, давая, таким образом, жизнь идеальным пространствам, усиливающим рифление и делающим его соразмерным всей материи. Следовательно, внутри метрических многообразий есть корреляция между геометрией и арифметикой, геометрией и алгеброй — корреляция, конституирующая большую науку (самыми глубокими авторами в этом отношении являются те, кто увидел, что число — в его наипростейших формах — обладает здесь исключительно количественным характером, а единство — по существу делимым характером).