Эти вопросы волнуют меня на протяжении последних двадцати лет – сначала как выпускника Гарвардского университета, затем как профессора прикладной математики в Массачусетском технологическом институте и Корнельском университете, где я по сей день занимаюсь преподавательской и исследовательской деятельностью в области теории сложности и хаоса. Однако интерес к изучению циклических процессов возник у меня еще раньше, когда в бытность мою студентом-первокурсником меня посетило озарение. Для одного из первых научных экспериментов м-р Ди Курцио вручил каждому из нас по секундомеру и маленькому игрушечному маятнику, который представлял собой хитроумное устройство с выдвижным («телескопическим») стержнем, длину которого можно было пошагово регулировать; это устройство напоминало старые модели подзорных труб, которые вы наверняка видели в фильмах про пиратов. Наша задача заключалась в изменении периода колебаний маятника – времени, которое требуется для совершения одного полного колебания маятника, – и вычислении зависимости периода колебаний маятника от длины стержня, на котором он крепится. Иными словами, нам предстояло выяснить, как поведет себя маятник при удлинении стержня: станет колебаться быстрее, медленнее или период его колебаний останется прежним. Чтобы ответить на этот вопрос, мы «настроили» наши маятники на минимальную длину, измерили период его колебаний и отобразили результат на листе бумаги, разлинованном в клетку. Затем мы несколько раз повторили эксперимент, каждый раз увеличивая длину стержня на одно деление. Когда я отобразил на листе бумаги четвертую или пятую точку своего будущего графика, я заметил, что он похож на параболическую кривую. Оказалось, что колебания маятника подчиняются параболическому закону. (Что представляет собой парабола, мне было известно из курса алгебры.) Сделав это открытие, я испытал смешанные чувства удивления и страха. На меня снизошло озарение: я узнал о существовании тайного и восхитительного мира, который можно было исследовать лишь математическими методами. Я влюбился в этот мир буквально с первого взгляда; со временем мое восхищение этим миром лишь окрепло.
С тех пор прошло тридцать лет, но я по-прежнему очарован математической природой окружающего нас мира и особенно циклическими процессами, происходящими в нем (например, периодическими колебаниями маятника). Однако меня занимает изучение не столько какого-либо отдельно взятого колебательного процесса, сколько большой совокупности колебательных процессов, происходящих одновременно, то есть изучение упоминавшихся выше связанных осцилляторов. Со временем мне удалось разработать достаточно простые модели, которые, тем не менее, можно использовать для описания очень сложных совокупностей объектов. Разработанные мною идеализированные системы уравнений с достаточной степенью точности моделируют групповое поведение светлячков или сверхпроводников. Я пытаюсь использовать вычислительные методы и компьютеры, чтобы понять, как из хаоса рождается порядок. Эти загадки особенно интересны для меня тем, что являются, образно говоря, передним краем математики. Два связанных осциллятора не представляют собой проблемы: их поведение было изучено еще в начале 1950-х годов. Но когда речь идет о сотнях и тысячах связанных осцилляторов, наука по-прежнему бессильна. Нелинейная динамика систем со столь большим количеством переменных все еще недосягаема для нас. Даже наличие суперкомпьютеров не помогает нам описать коллективное поведение гигантских систем осцилляторов.