Алгоритмы для жизни: Простые способы принимать верные решения (Гриффитс, Кристиан) - страница 116

вероятность выигрыша в лотерее?» – нам все равно было бы нечего сказать. Ответ на этот вопрос – как же преобразовать все эти различные возможные гипотезы в единое четкое предположение – будет получен только несколькими годами позднее французским математиком Пьером-Симоном Лапласом.

Закон Лапласа

Лаплас родился в Нормандии в 1749 году. Отец отправил его учиться в католическую школу с тем расчетом, что он изберет священническую стезю. Лаплас продолжал изучать богословие в Канском университете, но в отличие от Байеса, который всю жизнь балансировал на грани духовных и научных изысканий, он в результате отказался от духовного сана в пользу математики.

В 1774 году, не будучи знакомым с работой Байеса, Лаплас публикует многообещающий документ под названием «Трактат о вероятности причин по событиям». В нем Лаплас наконец решает вопрос, как делать выводы в обратном направлении – от наблюдаемых последствий до их вероятных причин.

Байес, как мы увидели, нашел способ сравнить вероятность одной гипотезы относительно другой. Но в случае с лотереей обнаруживается в буквальном смысле бесконечное число гипотез – по одной для каждой возможной доли выигрышных билетов. С помощью вычислений и «противоречивой» математики, ярым защитником которой был Байес, Лапласу удалось доказать, что весь этот огромный спектр вероятностей может быть сведен к единственному возможному значению, да еще и удивительно лаконичному. По его теории, если мы действительно ничего не знаем о розыгрыше наперед, то после вытаскивания счастливого билета с первой же попытки мы будем ожидать, что доля выигрышных билетов во всем выпуске составляет

Если мы покупаем три билета и все они оказываются выигрышными, то ожидаемая нами доля выигрышных билетов становится уже
На самом деле для вытаскивания w выигрышных билетов за n попыток ожидание равняется количеству выигрышей плюс один, разделенных на количество попыток плюс два:

Эта невероятно простая схема для оценки вероятностей также известна как закон Лапласа, и ее легко применить в любой ситуации, когда вам предстоит оценить шансы грядущего события, основываясь на его истории. Если вы предпринимаете десять попыток чего-либо и пять из них оказываются успешными, закон Лапласа оценивает ваши общие шансы как

или 50 %, что отвечает нашим ожиданиям. Если вы предпринимаете только одну попытку и она срабатывает, то оценка шансов в
(по закону Лапласа) будет более разумной, чем предположение, что теперь вы каждый раз будете выигрывать, и более практичной, чем метод Прайса (согласно которому выходит 75 %-ная метавероятность 50 %, или бóльшие шансы на успех).