Алгоритмы для жизни: Простые способы принимать верные решения (Гриффитс, Кристиан) - страница 120

Фактически, если вы подумывали устроиться на работу на строительный объект, объявление на котором сообщает, что «прошло семь дней после производственной аварии», вы наверняка откажетесь от своего намерения, если, конечно, не ищете работу на очень короткий срок. Если местная транспортная система не может позволить себе установить крайне удобные, но дорогие табло, информирующие, когда подойдет следующий автобус, принцип Коперника подскажет нам куда более простую и дешевую альтернативу. Зная, когда на этой остановке останавливался предыдущий автобус, мы можем предугадать, когда ждать следующий.

Но верен ли принцип Коперника? После того как Готт опубликовал свою гипотезу в Nature, журнал получил шквал писем с критикой. И становится понятно почему, когда мы пытаемся проверить это правило на более знакомых примерах. Согласно принципу Коперника, 90-летний человек может дожить до 180 лет, а каждый мальчик шести лет должен умереть в 12. Чтобы понять, почему иногда принцип Коперника работает, а иногда нет, нам нужно вернуться к Байесу: несмотря на свою очевидную простоту, принцип Коперника на самом деле – лишь частный пример правила Байеса.

Байес против Коперника

Предсказывая будущее, в частности продолжительность существования Берлинской стены, нам необходимо оценить все возможные периоды существования явления: простоит ли стена один день, месяц, год, 10 лет? Чтобы применить правило Байеса, как мы видели, в первую очередь мы должны определить априорную вероятность всех этих периодов. И оказывается, что принцип Коперника – это как раз результат применения правила Байеса с использованием неинформативного априорного распределения.

Сперва может показаться, что в условии есть противоречие. Если правило Байеса всегда требует от нас указания априорных ожиданий и убеждений, как мы можем их указать при отсутствии таковых? В случае с лотереей оправдаться незнанием можно было бы, допустив одинаковую априорную вероятность, которая подразумевает, что любое соотношение выигрышных билетов одинаково вероятно[23]. В случае с Берлинской стеной неинформативное априорное распределение означает, что мы ничего не знаем о временнóм интервале, который пытаемся предугадать: то есть стена может с равной вероятностью окончить свое существование в ближайшие пять минут или остаться еще на пять веков.

Помимо этого неинформативного априорного распределения, единственная информация, которую мы используем для правила Байеса, – тот факт, что на момент нашей первой «встречи» с Берлинской стеной она стояла уже восемь лет. То есть любая гипотеза, предсказывающая стене менее восьми лет существования в общей сложности, может быть исключена сразу же. (Аналогичным образом наличие двух орлов на одной монете исключается при появлении решки.) Любой период длиннее восьми лет вполне возможен, но, если бы стена в итоге простояла миллион лет, было бы удивительным стечением обстоятельств, что мы наткнулись на нее почти в самом начале ее существования. Таким образом, хоть мы и не можем исключить слишком длинные временные интервалы, вероятность их все же не очень высока. Когда правило Байеса комбинирует все эти вероятности (наиболее вероятный короткий отрезок уменьшает средний прогнозируемый показатель, а наименее вероятный, но все же возможный интервал увеличивает показатель), начинает действовать принцип Коперника: если мы хотим предсказать, как долго просуществует какое-то явление, и другой информации о явлении у нас нет, то лучшим предположением с нашей стороны будет следующее: явление будет существовать еще столько же, сколько существует на данный момент.