Физика для любознательных. Том 1. Материя. Движение. Сила (Роджерс) - страница 223

Жидкость не может скользить вдоль поверхности твердого предмета, она неподвижна на его поверхности (или движется вместе с ним, если предмет движется). Полированная поверхность твердого тела в молекулярном масштабе оказывается слишком грубой и захватывает даже быстротекущую жидкость, которая образует у поверхности неподвижный слой. Поэтому предсказываемое теорией необычное поведение идеальной жидкости (не поднимает и не увлекает за собой предметы) никогда не наблюдается в действительности[141]. Наличие у жидкости внутреннего трения изменяет картину линий тока и распределение скоростей в потоке. В очень медленно движущемся потоке линии тока плавно изгибаются вокруг предмета; в очень быстром потоке позади предмета они образуют сложный шлейф из вихрей. Теперь опишем эти крайние формы и промежуточные между ними стадии для реальной жидкости, обтекающей твердый предмет.



Фиг. 229.Ламинарное течение.

>а — идеальная жидкость без вязкости, F = 0; б — ламинарное течение в вязкой жидкости, F ~ v; в — турбулентное течение, F ~ v>2; г — течение c пограничным слоем.


2. Очень медленное ламинарное течение. В этом случае характер течения полностью определяется наличием вязкости жидкости. Линии тока имеют точно такой же вид, как и в идеальной жидкости, но скорости распределяются совершенно по-другому. Далеко от предмета, где течение не нарушено, жидкость течет с полной скоростью. На поверхности предмета жидкость неподвижна. По мере удаления от предмета происходит постепенное возрастание скорости от одной линии тока к другой (фиг. 229, б).

Распределение линий тока и скоростей определяется внутренним трением жидкости («вязкостью»), которое создает действующую на предмет силу; эта сила изменяется прямо пропорционально скорости течения (F ~ v).

3. Предмет необтекаемой формы в быстром потоке; турбулентное течение. Когда скорость течения увеличивается, трение в жидкости уже не определяет полностью характер процесса, а все более важную роль начинают играть изменения количества движения в большом масштабе. Линии тока, как и раньше, при встрече с предметом расходятся, но за ним они уже полностью не смыкаются, (фиг. 229, в). Позади предмета линии закручиваются и образуют бурлящий ряд вихрей (водоворотов). Образование вихрей создает силу сопротивления, которая намного превосходит небольшое сопротивление, обусловленное внутренним трением жидкости.

Эта сила пропорциональна квадрату скорости течения (F ~ v>2). Таким образом, предмет необтекаемой формы, быстро движущийся в воздухе, испытывает сопротивление, величина которого в широком интервале скоростей пропорциональна квадрату скорости. (Следовательно, сила, требуемая для поддержания движения, пропорциональна кубу скорости, поэтому удвоение скорости требует увеличения силы в 8 раз — это очень важно учитывать при проектировании кораблей.)