На плечах гигантов (Хокинг, Эйнштейн) - страница 112


Теоретическая модель Эйнштейна показывает, что время и пространство неразделимы. По Ньютону, время никак не зависело от пространства и было подобно железной дороге, уходившей на бесконечность в обе стороны. Однако в понимании Эйнштейна время и пространство связаны неразрывно.


Невозможно искривить пространство, не затронув время. Значит, у времени есть форма. Тем не менее время, похоже, идет лишь в одном направлении.


До тех пор пока мы ограничиваемся чисто механическими явлениями, для которых справедлива механика Ньютона, мы уверены в равноценности систем К и К’. Однако представление наше будет достаточно глубоким только в том случае, если системы К и К’ окажутся равноценными относительно всех физических явлений, т. е. если законы природы по отношению к системе К полностью совпадут с законами природы по отношению к системе К’. Приняв это, мы получаем принцип, имеющий большое эвристическое значение, если он действительно справедлив. Действительно, с помощью теоретического изучения явлений, протекающих относительно равномерно ускоренной координатной системы, можно получить представление о ходе явлений в однородном гравитационном поле. Далее будет прежде всего показано, каким образом с точки зрения обычной теории относительности наша гипотеза приобретает значительную долю вероятности.

§ 2. О тяжести энергии

Теория относительности привела к выводу о росте инертной массы тела с увеличением содержащейся в нем энергии. Так, если приращение энергии есть Е, то приращение инертной массы составляет Е/с>2, где с – скорость света. Однако возникает вопрос: соответствует ли такому приращению инертной массы также приращение тяготеющей массы? Если нет, то тогда тело в одном и том же поле тяжести падало бы с разным ускорением, зависящим от энергии самого тела. Такой удовлетворительный результат теории относительности, согласно которому закон сохранения массы содержится в законе сохранения энергии, оказался бы несправедливым, хотя в этом случае для инертной массы и нужно было бы отбросить закон сохранения массы в его старой формулировке, но для тяготеющей массы он остался бы в силе.

Такой вывод очень маловероятен. С другой стороны, обычная теория относительности не дает ни одного аргумента, из которого можно было бы заключить, что вес тела зависит от содержащейся в нем энергии. Однако мы покажем, что из нашей гипотезы об эквивалентности систем отсчета К и К’ с необходимостью вытекает тяжесть энергии.

Итак, пусть две физические системы тел S>1 и S>2, снабженные измерительными приборами, расположены на оси