На плечах гигантов (Хокинг, Эйнштейн) - страница 65

, если оно совершенно, и оно различными способами управляет брачным союзом додекаэдра. Подобным же образом это отношение отражают следующие консонансы, или гармонии: 1:2 и 2:3, а также 2:3 и 5:8. Ибо самым несовершенным образом это отношение выражено в 1:2, более совершенно – в 5:8, а еще совершеннее – если мы сложим 5 и 8 и получим 13, а затем сделаем 8 числителем, если это соотношение не перестанет быть гармоническим.

Далее, при построении стороны тела следует разделить диаметр сферы, и тогда октаэдр требует бисекции, куб и тетраэдр – трисекции, а брачный союз додекаэдра – деления на пять. Подобным же образом отношения между фигурами распределяются в соответствии с числами, выражающими эти отношения. Однако квадрат диаметра тоже делится, то есть квадрат стороны тела формируется из определенной доли диаметра. А затем квадраты сторон сравниваются с квадратом диаметра, и соотношения получаются следующие: у куба 1:3, у тетраэдра 2:3, у октаэдра 1:2. По этой причине, если сопоставить два отношения, то кубическое и тетраэдрическое даст 1:2, кубическое и октаэдрическое 2:3, октаэдрическое и тетраэдрическое 3:4. Стороны додекаэдрического брачного союза иррациональны.

В-третьих, гармонические отношения во многом свойственны и уже построенным фигурам. Ведь можно сопоставить количество сторон грани с количеством ребер у тела в целом, и тогда получаются следующие отношения: у куба 4:12, то есть 1:3; у тетраэдра 3:6, то есть 1:2; у октаэдра 3:12, то есть 1:4; у додекаэдра 5:30, то есть 1:6; у икосаэдра 3:30, то есть 1:10. Можно также сопоставить количество сторон грани с количеством граней, и тогда куб даст 4:6, то есть 2:3; тетраэдр 3:4; октаэдр 3:6, то есть 1:2; а додекаэдр с его супругой 5:20 или 3:12, то есть 1:4. Можно также сопоставить количество граней с количеством пространственных углов, и тогда кубический брак даст 6:8, то есть 3:4, у тетраэдра отношение равно единице, у додекаэдрического брачного союза 12:20, или 3:5. А можно сравнить число всех сторон с числом пространственных углов, и у куба это отношение равно 8:12, то есть 2:3, у тетраэдра – 4:6, то есть 2:3, у октаэдра 6:12, то есть 1:2, у додекаэдра 20:30, то есть 2:3, а у икосаэдра 12:30, то есть 2:5.

Далее, можно сравнить друг с другом и сами тела, если тетраэдр поместить, то есть геометрически вписать, в куб, а октаэдр – в тетраэдр внутри куба. Тетраэдр составит треть куба, октаэдр – половину тетраэдра и одну шестую куба, точно так же как октаэдр, вписанный в сферу, составит одну шестую куба, описанного вокруг сферы. Отношения остальных тел иррациональны.