Тайна за тремя стенами. Пифагор. Теорема Пифагора (Санчес) - страница 24

Евклид, занимающийся геометрией. С рельефа Андреа Пизано, XIV век (Музей Домского собора, Флоренция).


Теорема показывает также, как получить квадрат, по площади равный двум заданным квадратам, то есть как найти такое значение х, при котором х>2 = а>2 + b>2, так что это еще один пример применения геометрической алгебры. Если предложение 47 представляет собой кульминацию первой книги «Начал», то еще более интересно, как впоследствии Евклид доказывает теорему, ей обратную. Это предложение 48, которому обычно уделяется не так много внимания, но которое имеет огромное логико-дедуктивное значение. В нем постулируется, что если в треугольнике квадрат одной из сторон равен сумме квадратов двух других, то угол, который образуют эти стороны, прямой (см. рисунок 10).

РИС. 10


Доказательство состоит в том, чтобы построить отрезок CD, перпендикулярный АС и равный СВ. Согласно заданным условиям:

ВС>2+АС>2=АВ>2,

и, так как треугольник ADC прямоугольный,

АС>2 + CD>2=AD>2.

Поскольку ВС = CD, АВ>2 = AD>2, то, следовательно, АВ = AD. Следовательно, треугольники ADC и АВС конгруэнтны, а угол АСВ, равный углу ACD, прямой.

Евклид приводит и графическое доказательство, где квадраты, выстроенные на катетах, превращаются в параллелограммы той же площади (так как они имеют то же основание и ту же высоту), а те, в свою очередь, трансформируются в квадрат, построенный на гипотенузе. Это гениальное доказательство представлено на рисунке 11.

РИС. 11

Оксирннхский папирус 29, фрагмент «Начал», датированный II—IV веками (Филадельфия).

Фрагмент «Афинской школы» Рафаэля, Евклид изображен с циркулем. С противоположной стороны фрески находится Пифагор (Рим).


Теорема Пифагора числится среди имеющих наибольшее число возможных способов доказательства. Одно из объяснений этого явления в том, что в Средние века представление нового способа ее доказательства было одним из условий получения степени Magister matheseos, то есть магистра математики, и в известном смысле это умение стало со временем универсальным показателем общего образования человека.

РИС. 12


Гениальный Леонардо да Винчи (1452-1519) был образцом универсального человека эпохи итальянского Возрождения, поскольку блестящим образом сочетал в себе знания в самых разных областях — как в сфере науки, так и искусства. Человек, который запечатлел таинственную красоту Джоконды и изобрел бесчисленные удивительные механизмы, смог представить собственное блестящее доказательство теоремы Пифагора. Леонардо основывался на знаменитой фигуре «мельницы», то есть треугольника с квадратами, построенными на трех его сторонах. К ним сверху он добавил треугольник ECF, а снизу разместил копию исходного треугольника А'С В' (см. рисунок 12). Проведя отрезки DD' и СС', служащие друг другу перпендикулярами, можно убедиться, что DD' делит верхний шестиугольник ABDEFD' на симметричные половины, которыми, если их развернуть друг относительно друга, можно полностью накрыть шестиугольник АСВА'С'В'. Следовательно, два квадрата, построенные на катетах, в сумме дают площадь, равную площади квадрата, построенного на гипотенузе.