Итак, следующее, что я хочу показать вам, – это как, складывая стрелочки, увидеть, что свет распространяется по прямой. Поместим источник и фотоумножитель соответственно в точках S и Р (см. рис. 32) и рассмотрим все пути – самые разнообразные кривые, по которым свет может попадать из источника в детектор. Потом мы нарисуем маленькую стрелку для каждого пути – и мы хорошо усвоили наш урок!
Для каждой кривой, например для траектории А, существует соседняя траектория, которая намного прямее и ощутимо короче, – т. е. движение по ней занимает намного меньше времени. Но там, где траектории становятся почти прямыми – например в С, соседний, более прямой путь занимает почти такое же время. Вот там, где стрелки складываются, а не взаимно уничтожаются, там и идет свет.
Важно обратить внимание на следующее: единственная стрелка, соответствующая прямолинейной траектории через точку D (рис. 32), не может объяснить вероятности того, что свет попадет из источника в детектор по такому пути. Близкие, почти прямые траектории (через С и Е, например) также играют важную роль. Поэтому свет на самом деле распространяется не только по прямой. Он «обнюхивает» соседние траектории вокруг нее и использует небольшую часть ближайшего пространства. (По этой же причине и зеркало должно быть достаточного размера, чтобы нормально отражать: если зеркало слишком мало для пучка соседних траекторий, свет рассеивается во многих направлениях, куда бы вы ни поставили зеркало.)
Рис. 32. При помощи квантовой теории можно объяснить, почему кажется, что свет распространяется по прямой. Изучение всех возможных траекторий показывает, что для каждой изо-гнутой траектории имеется близлежащая траектория, значительно более короткая, следовательно, требующая меньше времени (и существенно отличающаяся направлением стрелки). Только траектории, близкие к прямой траектории D, имеют стрелки, указывающие почти в одном направлении, так как у них почти одинаковое время. Важны только эти стрелки, так как из них складывается большая результирующая стрелка.
Давайте более тщательно исследуем этот пучок траекторий света, поместив источник в S,фотоумножитель в Р, а между ними – два кубика, чтобы траектории света не расходились слишком далеко (см. рис. 33). Теперь поставим второй фотоумножитель в Q, под Р, и опять будем считать, ради простоты, что свет может попасть из S в Q только по ломаным траекториям, состоящим из двух прямых отрезков. Что происходит? Когда промежуток между кубиками достаточно широк и может пропустить много соседних траекторий в