представляет собой 2, а отрезок С – 3.
Теперь, как умножить 2 на 3? Мы проводим преобразования последовательно: взяв отрезок А в качестве единицы, мы удлиняем его в два раза, а затем еще в три раза (или в три раза, а затем еще в два раза – порядок умножения не имеет никакого значения). В результате получается отрезок D, длина которого представляет 6. А как умножить ½ на ⅓? Взяв в качестве единицы отрезок D, сожмем его до ½, а затем до ⅓ от этого. В результате получится отрезок А, представляющий 1/6.
![](
AAAy7UlEQVR42u3dD4xdV33g8Z/0PJo/TjyesWMbW44Zd7ETJ9RJCKnZhH8iheyyaimtWDYL
W4l2W1RpRYu6Wqr906UrdoWgrQq03aa7oBZBupRmSxeywBKZQFjCvyZZgo0TMcaxPIwde/44
npk3Gl9pz0/vd/R+c3z/vTdvxjPx9yMdvffuve/+Offf+Z177r2bpDONkDIBAAAAAMimmsON
hDQY0sWQLpFtAAAAAFAvoNKrUh8LaX9I7wrpONkGAAAAAOUBVdq870hIYwRUAAAAAFAdUMWg
SofZbb+HyTIAAAAAqBdQ6RWql4f0avt9T0gPkm0AAAAAUO8eqreH9HVpXaXS1EgCLgAAAAAg
oEposHRzSL8Q0rtD+qWQ7rb/LCaBFQAAAAAQUCX0QRTbQ/q/Ib0ipN+Q1tP+eDAFAAAAAAKq
kn79Ib0tpD+X1hWpx0I6E9JtBFTXrLS5Z95Vytg96/B/6TgAAACADR1Q/UNpPZDivfb7uZDm
QnoZ2XbNyroMfOr8TwP4PuHF0QAAAHgRBFR6BeE/h/T9kMat20RICyEdJNvWrXhlqFEQtDSS
da4BzFIyzGUbps+St0taVyub9lu3hxELhvrt+00hfTOki9Yt/k+HHbOAfKd1PxnSUEjzId0e
0mhIv2LbGgAAALDhAqrYFGuLtJr2vVfaD6DIrAA8asP0slmWFrz32PdTNl+X7fegFcbTJmSD
7rfvf53N/4IV6jMXSPgAYSknsFi03yPJcH3WrWnj7LMgQVzQoP+dDWnAdY/9Yrem+z5rn8Ou
XzrtGIxo3hyzQOTOkM6G9HxIm22YIQt09fOEfdeg5AX3/ax9v8Xl2ah9SpKXMd8Hk24HLfiJ
v/WK5XabrrhlnUq6xTyu8yCTGwmoAAAAsFEDqhgo/StpNfH7XNLv70J6n7QeTDHew/nYFtKn
rID/XWlftRDrNm7BwfXWbau0XzbctAL8jP3ebUHIjOu+1RXwY0Az5aYzauOZd+OIw83Y9932
n0kb/14XeESn7fdm133I/p9ZcBa//8iG25MEVH4e1wsfCA5I9X1QPuhu1Bin79ZktwQAAMBG
DagyCxx+LaRnpXVVI14xuWi/NQjY0eOAKjpgaT3SvPmpikBiuKRfw5IGDH22nPr9GWld8blV
WletnrFgbZe0r6JdsABtVNpX4pYs6PVXiPT3hAUqMai50QLF8zadGAietwAx+nsLlKdcUDlj
/9UHkrzNtoWfhPTRkPZZmrdAMo5Xf5+xwFPn+TXWTdP3pPWSaL3S9knrr7+1ud990rq6dpHd
EgAAABs1oFJvkvZVk7+U9hWWp6TV5Ev76b0wj/dwPjQI+IgLAjRom7PvUxZ4aGH+IWk3W1uw
7ses8H9I2lekBqzfS6TdPO1/W6H+btdfC/CHLZDQ8XzDprvPAgRd9q02zg9awHKbje+QBTPR
t12eHJR2U0X1UmldhdNA46Tln87Dj0P6jgVYB238GlDEJpc6rDYlnLZ5ut2C2mELvr4p7XuY
hl1AMijt5o377POULf/NNs7Tbv78u8UyFwD6ZpYPuMCyEw8nv4/m/G7YfJ4THkoBAACADRxQ
aWDxnyww+JB9Dlhhd8EK6q+U3j/pTwvUnwnpUZveFmlfqWi6gr8GFte5/v6+p93WbcEV/Eek
fQ/UtHX/cM70438vVcyjDxAeLhmm6h6gx5P/XEq6XUrGocM8aSk1ndPtUk7/OG9P5szzYk6w
1O0T/bqh4x5ndwQAAMBGD6jeIa0rKf8kKXj7wq5eqdArJf2uIN4rdR5GcCkJGOKVlImCYCMG
LEXvQor/bdgyXU7y53JJflUFX3mBQ6PiP0XD1Bln+l1KxpWtQaDUaVDN+6cAAACw4QKqhvuu
9049JPlXQqKvh/QeaV3N6tULfrNV/G9R4JD3u84wq7Ws2Qqm0+mVpfUYuBBMAQAAYEMGVLEw
q0359EEIn6/4jzapG7Zhj5OFAAAAAK7lgEqDKX0Awj3SepT3yYr/6IMTfk7Kr2IBAAAAwDUR
UKnvS+tq06el9YjuMhPCi1cBAAAAYFmTP/9gBx4QAAAAAAA1AypxgZQQTAEAAABA5wEVgRQA
AAAAdBlQAQAAAAAIqAAAAACAgAoAAAAACKgAAAAAgIAKAAAAAEBABQAAAAAEVAAAAABAQAUA
AAAABFQAAAAAQEAFAAAAACCgAgAAAAACKgAAAAAgoAIAAAAAAioAAAAAIKACAAAAABBQAQAA
AAABFQAAAAAQUAEAAAAAARUAAAAAEFABAAAAAAioAAAAAICACgAAAAAIqAAAAACAgAoAAAAA
QEAFAAAAAARUAAAAAEBABQAAAAAEVAAAAABAQAUAAAAAIKACAAAAAAIqAAAAACCgAgAAAAAC
KgAAAAAgoAIAAAAAEFABAAAAAAEVAAAAABBQAQAAAAABFQAAAACAgAoAAAAACKgAAAAAgIAK
AAAAAAioAAAAAICACgAAAABAQAUAAAAABFQAAAAAQEAFAAAAAARUAAAAAEBABQAAAAAgoAIA
AAAAAioAAAAAIKACAAAAAAIqAAAAAAABFQAAAAAQUAEAAAAAARUAAAAAEFABAAAAAAEVcDXc
bOloSNNkBwAAAAiogHoaIf1BSD8b0j0hPU6WAAAAYKMGVP0h9VnylkJaCCkjC7EKBmwba5IV
AAAA2KgBlTa50isFW0M6ENJQSBes31xInwrpgyFdtm4EV+gF3Y5mQpoPaZHsAAAAwEYNqH45
pPtCeiqkPw/p+pCeDmlzSP8ypPdboffDZCN6SJv87ZLWFVACKgAAAGzIgKphwdQXQ/qVkCZy
hvlQSL9IQIVVoE395sgGAAAAbNSAaktIe0N6qCCYioXdv3EBGE3+0EubyQIAAABstIAqBkav
D2lUWk368txqw32aLESPZRbE7xYeSgEAAIANFlBFd1lhdtyCLL1iNSit+1peFdK7QvozK/g2
yEb02JBtexfICgAAAGykgEqvDuij0n9GWo+u1odRfMT6bbMCrn4+GdIH3H82Kt9Usex7XM5G
QR5ezumedRFsZlKv+WSjYPxZMr9SY5hGzXmq6ld3vD6/ipZBA/X9Ocvc7Xx2Og/pdt3Neqyz
rvKWLyv4T1aw3eZNo+i/jRfBPgsAALCuAyr1hpCOSOvpfl+0bno/lTYBvMsCrXHJv7dqo8lW
8F1qFE6zFc5T1TB15ifrYLm7maesw/HWmb+tlvRK1WKP5rPTeVjpeqyzrqrysdM8XMm2CgAA
gB4FVHda0KTvmHrQujVs2DdL6/1Tt0jrCsJ4D+Yhvjy4zFIyTJ91y/ut32PzRLHvAwXjbVq/
LbL8Ed2LNl9q2D53u/7xHp8JG8eITSfaZ5+nQjpp38dcd/3PbEg7c+Ylnb/YPd5PtMc+L1ig
+2zSPfabtXWkQcnpkM6GdCik7W7eZmxZh238W63fjE1T02Y3jjjOYzbve+3zBWndb7fTlvd7
Np4FW241Ka3Hoet8nrHfr7BxP2/TGbNx3WnzeZ+bjxtsGmfcuE7aeojraNbl05RVAsQ8jsty
zL7vtN9zljfTId1k3c64fJm1frosN7tpTLl1PuK2F2/Arb+Dll9fsekN5OwHizb8sC3jKdtm
RmT5/WRTbrxxWx+0+fTdngvpYrJ/bHHbSF+yjy26fb0I750DAAAoCaiuk9Y9UlpYetR1zyzp
U/8+HtKvh7RjhQFVvDfrY1aAXkiCoIWSYCP2TwuVsd+gBTva74AVUGNQ5ptLLdkwdZpI1Wn2
ltdvyRWuUd96euhJM1mHWU6QX7dZ4P0dTHPett1GzX5+PnUef5TsR2KB6pzbPyLdl0+EdLsF
1s2c4HDGvs9bgH3KBf17XPB80oJSSSopYrC4WFKBEOdr1AWKMTCNx4gnLLAjqAMAAOsuoNIA
5yXSeoHvRVdQ9AWX/VZQO9eDAvN9HRQwO3VjUmDT5Ziy76NJIbjoviMtxF2wQt1owTBasJ50
w+g0nrHf263geVsSePn50O9DVkg9L60rKPNWeL3DFTLvtE/t/3YrWM7Z//XKxzYrEMdCqNj3
UVcQfdTyXIf/fy4Y9VfXdDht6qkvcv55G++Ay4ttrlDtp+WXYcoC2SFXuPcByKxNP14J0+H1
qufBnMBl1o1fl2/aBcq6bF+1PLnbhjso7YdZ7Em2CV0vm637lJu/suDJfz/jxrsaD2OZckHS
QEkQ3lcQaKXb+4GSaaX9XukqGNYiWC66b83vS3nDPW6VPv0EVAAAYD0GVBqEHA7pd0O6lAQQ
YoWYu6zAfaoH0591BdvoghX897vC/nelXTt+h3X7gbRqqmPTNx3Ha204vf/ra9Jq4hablKkv
WdCo4z5uhdJ7pNVE7aU2vt0WKEzaf4ZdQTv+T/na+NhccIct02xSwN2S/G7K8qZ2YgFs0z61
YHvZ/rdk87PTPjVo+Zi0a/m12y4b13MuyPFX7GKgpOP+iM3HORfgDCbr5axtG78vrSZnu6Td
BG2Hm09/laE/mafYDG7YDR+bVi5aYDQv7eZoQ/YfHf9f2DjenQTucTx9bvyT1m2nW19xPm6z
8Uxbt7hejlj/k8k6ELcuh10wGvPvnM3fO6XVNPGUm6+zllen3DqZdf/X5oQ32LYYm/LFJpcx
73TbutmW5QYLxtMrRS+zCo9+l/f32rDnLYg/bPvVCQsw4740nQRMsblqGnwPSr33gA0mQbUk
+3IMvCUJuhcsMO+zPIrdh5IguGHz2JcEVg1Z3kQXAADgqgZU/urMzfb92WS4WOCL/T8vK68d
bliAc08StGjhOD6ufZMVpi51OY2HC7o/6b4/XtKv7H/Hc/qP93j9TLvvEyXTni75nfabqJiO
uO1hPGeZxruY9zKL7nPago14f9JzUvzwk6LlmqhYVvXQCtbJeM42U8fRmsMd72Lcn6ixr20q
CULynhq4xQVb0/Z9Wpbfk7jDgsx+ad9DtttVHuj+/EMbLgZgkzbsfgscn3Ddb7Z+sfngSctv
PT7caRUkXyiYZwAAgKsWUMVmNZp+TlrNmr6VDBdvRNf+Wgv+aA+mHaf7TE7BqN+mGa9mUHi6
dsRALl4pRG/ytNOnUU4XBObTFcH1kznB2nhO8PZkh8HkJ2T54+E3cUwAAADrJaCKhZTXh/QW
aT0IYLygwPWPpNX8bqIHQU6joFsmy9/rxIuDrz3a9Eybw82TFT2zkndQ5b3nKm+8RfciNmrs
+5KMJ+/9bn4al1mlAABgvQRUWkjRp/v9B+umVwb+sbSaXen9Ddr05k4LpvRepXf1aNpl78np
9D1JeHGZkvb9RVi9/a3usHXfe5atYJrp/7IeLAcAAMCaBFRqh7TvfXh1SK+T9lPd4s31etP7
r0mrWQ5XjbCaZsgCAAAAbJSAKt7joE9U+6y07pH6rivYPiLtm/AnCKawRl4gCwAAALARAqrY
hEafQvZL0noQQNlTzGhyg9WmT3M7RjYAALBuVD0xFrimAyrvqLSf+EfghKvlAQ7YAACsK/qK
C32lxgRZAZQHVDTnw3rwGbc9EtgDAHD1LQivMwFqBVQUXrEesB0CAMC5GdiQARUAAAAAgIAK
AAAAAAioAAAAAICACgAAAAAIqAAAAAAABFQAAAAAQEAFAAAAAARUAAAAAEBABQAAAAAEVAAA
AAAAAioAAAAAIKACAAAAAAIqAAAAACCgAgAAAAACKgAAAAAAARUAAAAAEFABAAAAAAEVAAAA
ABBQAQAAAAABFQAAAACAgAoAAAAACKgAAAAAgIAKAAAAAAioAAAAAAAEVAAAAABAQAUAAAAA
BFQAAAAAQEAFAAAAAARUAAAAAAACKgAAAAAgoAIAAAAAAioAAAAAIKACAAAAAAIqAAAAAAAB
FQAAAAAQUAEAAAAAARUAAAAAEFABAAAAAAioAAAAAICACgAAAAAIqAAAAACAgAoAAAAACKgA
AAAAAARUAAAAAEBABQAAAAAEVAAAAABAQAUAAAAABFQAAAAAAAIqAAAAACCgAgAAAAACKgAA
AAAgoAIAAAAAEFABAAAAAAEVAAAAABBQAQAAAAABFQAAAAAQUAEAAAAACKgAAAAAgIAKAAAA
ANZ9QNUIKbPPPL5fRlYCWAMNjj0AAGCjBFS+8JLX/bqQLlUMB3RTUH5NSCdCmiBbkEiDKQIr
AACwbgOqWEDZHdL9Ib05pIGQZuxTu38lpN8PaZysRI9sCekPQ/pgSA+SHSgIvH87pGMhPSzF
V9EBAACuakDVsP5/HNJbQnompP8prSsH6t6QfiOku0N6K0EVVigG8IMh7Q1pD1mCgu1Er46/
I6RvWEAFAACwLgMqLbgckFbzq2ZIvxzS467/X4e03wrATbISPTIc0hDZgAJa0aNNjX8Q0mNJ
MA4AALCuAiq1ywq3H7dgyt+vsGDftZaYe13Qi4JyZgGVOkOWoIQ2Pd6abDsAAADrLqB6hbTu
l/qs6+YLLn8f0iNkI3po0D4XyQqU0GDq1pxjEgAAwLoKqG6X1pWCJ+XKG7+1EPPvQponG9Gj
bVG3qVMhXQhpJ1mCEjNkAQAAWO8BlT7F7xb7Pi/576Satk+a3GClLtt2dC6kuZD2kSUosZWg
CgAArPeA6khIh6X1+OrY/CpzAZT/3UkwtRrBV6Nk/vIeqZwl85LOU6NgWKk5fKPkeybl7/cq
mm7eMtRZNinJk6zmcHnDNkq2h7xxZh2s+8092HYaBXmYVWw/edNoFGwzUjFeKViHVXmZ1dzO
8+anzncpGI9UzGed/MgK8qhqv5GK/6fzO1Nz+2p0ud9LybioPAIAAIUBlS9g7LfPv+phQNRw
n2+zgG1e2s0G9dHr/gEXerVC30t0UdpXw5asm97b1bR+l5Lx63JdrlH4qQpKirplFcNnFd+z
kvmp062bflnNYC1bwXJV/a4zv/rI9G2S35S0k+0u6+B/WRfrvtt56TQv644nW4Vxd5sfWRf7
Sd3txb8fb6KD4aWL+VvJ9gcAAK7RgCoWGPql9SLfZyxgyQuMYqDTaSFDh78tpI+FNJr0Sx+/
roXqIfddnQ9pu+uu99t8xwIsTSPW/7SNL76IeEqWPxnM06aNJ900Rt3wL9g0xcarwzxrwaC4
edL52SntpkhnQ3o+pBvsc58FC9rvaWldhRmyfmdtPPG+obP2vWnpuBUgd9qyqCdCmrXl/AfW
f8HNU/z+nK2nV0rrqY1q0Qqjz1n+7bPp7LBhmzad2OxuMBm3OuUC29Gc/t6IBcRlw+g0JqX1
eH4d5+ut+9Num9xq0z3pug24+Zu1ZZy25ei3FKe/6JZfXP9Uus1vKfjvsE2z7AEacRoXLX9n
LXnxyYaztjw32fo5lzO+ARvfbNJtn+Vff8GybHHdFpP8a+Ysc7+bL3HbRNw3mi7vB21+F904
43IOu/FddN8l+b7olj/NN0nmca+t53mr+Om3/zfd//M0k/3Db9cj9jltlTbiKnBUn+t2iVMH
AAAoCqgiLaS8LqRPWwE2DYi0/38P6Xek/Tj1TgKr3UlhzRcM/dWTPivQxEDHv5/ohAU4gxYs
xBfBahA45wp+Y9J6GtisddPxf90FVzEQGbNxbc8J9KroNP9jSK8K6T6bbgzM9KEe3w/pLlcA
l5xpxOHuqygQztt/Y+FQ8/+n3fiaLh81775q83N/zvi0OefXQvqky19/ZagsH3R+t7n1tlJp
c6xX2zZYZ/iVTKson/vkyqZh6bbYlxS6JQn+/XBLLrBPC/ODSd7H7aQsAJ2zoDx+Fl3Vi8FD
Xv8hF1BdyJmn0STPGjWClQH3Wx9mc8QNM5Xsx31unHEedrlArGH/OW/z9RMb9mftU/f7f2rf
J+1zT3Is8uvmguXXggVOI25d7LVhTlu/mYLKHV2+9CXmZ63/mH3X4a53lSqbbdrbrN+zVikQ
KyIm3fGwmVQSpHmbBo2xUmWvzddizvG4X6qfmll1DN/t8m096U8qCWK3m6X1UCVdB18Sri4C
ANYwoErfBTRTcCK6zQpKo0kBtW5B9pshvS+ku0M6FNJXQvquFTiOJQXBtFCptfY77LPfFRbG
rP9Jd3KdtoLJQRvPqJu+9rtOltfcD9i4xyzYileIDrsCVyx0nXAFJH3JsV5F+lZIP2PfB6wQ
ctyGv9Wmf9LyV0/2+2ze9F1ej9k43y7L7yGacwWy47Y8b7Jhxf4fC1iPhvSUFSrnLBjWFzP/
ggV9CzZ9vZrw81ZQ1Xn5tv3/5SF9zuZ7zOZbp3ejFRgXbNxNV8gcTQK9uJ5nXQE0cwXbvOA4
r3BXFgBV/a4KAKqCsIGcYRuWBmqMr2yY0ZrTHe1ifx7osv+Aq5CQHuRZ/H0k6Va17HHbGkry
K/7vcMn63VMwr0XDFBldg+Nu5oLGJdu3z9u+fCEnwPbHwMFkXOct6PRXDsUduwZcIJYGZn5/
9JU0ecZsPsal+Ep/nOcnrGJqrxv2MRv/QWk38z5mebDH/nvajqnbLSCNwepOaV+VHnPTixVi
Ysdesf/tt3TAKpweIaACAKxlQBW90QUneYbtxP/DJBCrEofTYObDIf1XadVSd1rrOZ7T7XjB
sNNy5YuHY+H4klzZfGfcTsLeQ/Z5OaeQ78c5XjBvkjPO+DutPf7TGsv/tWQerrPPvKZIWpj4
iCuYzdtyfEBaTai0QPe/7HPI8qvf1kufC6hmXYFGt4tJF6xOu6A2Xl35oQWML7XfEzb8CbcN
xSaI8erCogWLHw3pf7hC2HEbdywcakCsVxdusv4/tnFpAeur0m52FgPj2OxTC2tnXOH/YFKo
jIW8fUlQO24BcV4QeMIKfYdcQTDdb3wBUZIC4ZDbPrcWrO94BWLIgu85V1CNwfZBV6B8wYJp
X7jWYW+wigsfxPTnBEN7LeDX+XrapjVrBds4H/7K9T02j6eSfDvjgqDzNt9NG5cv3N/lhjlj
/Q+5Avq4bWOaXmXr4l223TwgVzYL9uvpeln+RMDd9jtW3Nwhy68K/cCGGbHv+12wEgOaGNTo
sj7r8jf2j5U3m5NAKA2MZpNxzts2Gq9oxiBnuCSgHV3jc8aRGsPcX7NbrGjpxRXu1xVUrhyw
gG2c0z0AYK0CKj0Z/bOQ3mMn8u/lBEz6/V5X+OnmIRXxP5cK+on0rkYxb/46HXedl8yWPbkt
Lw/jfxY7WI74n3T+L5VMZzEnoJSk22LO52JBQHq8JFg9XiPw9dPPC4L1CtlvhvT5kB4sCUjV
0Yo8e7yH+8pDFf0fvoaPI2WVAA92mbdF+RnfiXfIgqLf6+J4IDn7qW861rAA55J191eLYkWD
WBB/2gVKm2xYrajYIu37svpt2Elp32eWd3zZZ9ONge4eF+Df4IJrkXZz2xisx2aHcV7n7D9D
STD/QkFwvzsJSGPlxYTk3+u6VZY3PxyR5VfPFlxgOZV8igtIt0m7eagPQufs+LFfip/6mVfp
sCsJPnVZdhBQAQDWMqDSk/jbpH3vz0JOAKI1fm8N6eMdBANpINPtk+u6sZZNPbp5Ql6vlyO7
Ssveq8B3oGYBCteuTMqbp3WyH2U5lSa+smcx6beYVCik4/IVEdMllQ15xtfB/tdIgsPYNDoG
kfO2jNe5//a54NEHXSLL7/vyAVi/C0rVCeu3xeVzDKj6CwJRP35tAn6jBYZ3WXAVg7in2WUA
AGsZUG1zJzitHf030mouNuhOXnfZ5yNkH1bBPrcNAi8GVe9Bywtosoruvl86XFYyzaL+aWWX
Dw7zWhKk3bp9WMXxJI+ygv51xKvlD0m72fKSdF7xBwDAigIqvSLVdCe2t0jrqXN9yQn4i1Ld
3AroFoUgVAUoAxtofrMOhunmHW5SEBDVGa5REbSVBX9rnUedWOQYAgC4WgGV1jJ+RpY/hlsL
LvrkOL1B+xbr9n5Zf4/PxYuD3mdygWxAReE7viPuWs+HXo4jW8PpAgDwog2otOZRbzDXJ7S9
yXX/K2m9Iym2b78oq1NLCWhTnUGyARXmyQIAALAeA6roqOQ36eOqFFab3tw+JPk3oANU5AAA
gHUdUFFQwdUStz1t8qdXHwbIEpTQJsmnCbIAAMB6C6iAq23MCsv6rrNPkB3ICbz3W3qK7AAA
AARUQEu8yqCPTf/bkJ6Q1rtuLpE1SOg7h34rpG+6IAsAAICACgg+J+2XRjfIDuQE3hpkP0xW
AAAAAirgysLyhPsOFG0nWclvAAAAAipcc9ICslBIRsV2ImwnAACAgAqggAwAAAACKgAAAAAg
oAIAAAAAEFABAAAAAAEVAAAAABBQAQAAAAAB1drg/TIAAAAACKgAAAAAgIBqbXF1CgAAAAAB
FQAAAAAQUAEAAAAACKgAAAAAgIAKAAAAAAioAAAAAICACgAAAAAIqAAAAAAABFQAAAAAQEAF
AAAAAARUAAAAAEBABQAAAAAEVAAAAAAAAioAAAAAIKACAAAAAAIqAAAAACCgAgAAAAAQUAEA
AAAAARUAAAAAEFABAAAAAAEVAAAAABBQAQAAAAAIqAAAAACAgAoAAAAACKgAAAAAgIAKAAAA
AAioAAAAAAAEVAAAAABAQAUAAAAABFQAAAAAQEAFAAAAAARUAAAAAAACKgAAAAAgoAIAAAAA
AioAAAAAIKACAAAAABBQAQAAAAABFQAAAAAQUAEAAAAAARUAAAAAEFABAAAAAAioAAAAAICA
CgAAAAAIqAAAAACAgAoAAAAACKiAdaURUkY2AAAAgIAK6BzBFAAAAAiogC7o1amdIZ0lsALQ
w+MKxxMAAAEVrgn7QvpUSA+E9AmyAzl2h3RbSI+EtEhhGQRV6NF2wTaCsu1E2D5AQIWNclLr
D+lISOMEVCjwqyH9Tki32HbCCQ51CkJA3rah5aB/EdJsSA+RJcih5ZI/COlkSB8mO0BAhY1g
0T5PkBUooE1CB0LakgTjQJ7BkN4d0hdCOk52wMls+3hPSNMWUHE8QWpPSPeG9BWyAt0EVNeF
9Br7/nDN8XFJFL0yTxagwgBZgBr6QnpDSN8joEKOJfucIStQoGmfZ8kKdBNQaTD1d3aw+aOQ
TtkBZ9L63xTS5pDmbGN7VFrNb2hegZXYQRag5gmOq5gg+MZKXZZWU64JsgIVx49nyQp0E1AN
W3Ck6beTfhpU6WXyUdft0yH9c+HqFLqTJd8vkCUoMS/tq5gcc1DHIFmARGze92VpPRCJ4wmK
6AWErWQDugmo9IrTn0jriVrfCOk3pdWOVAOnD1l3vZfhbSHdF9J+ad24d5kDElZwYgOqaLOL
BWk15VokO1AjkBqxbQbw4jnn1uRcRGAFr98+T5EV6Cag0kLLey1A0pu/f9FOTP9eWk37nrTh
Zi2gmqRwgx6c2NQS2YESQ2wn6IAGUj8hG5AjVuRx5QFV9PaWKbIB3QRU4gKkXdJq3nfaInRf
g9Nvn99IDlDdHthwbZ/YNEDX5n7cPI4y26R1xXycYwcqDFJgRoF43ND7w5/O6b4ez5FYe1oW
5go3ug6oMrcD3xzSgZA+mLNDH7bPr/Tw4NAomI+8/zYqDpRV/8mSADHvuxQMLznjzDo8APb6
INkoyLM6+dDJuFYy3+l4/XyMSasmaLYkXyXnv1kX81Q2H1frxLVaJ82667BRYzsv28br7geN
gvE2Crr5YWOzi30WUF2NvJM1XkeNLrbxouNo2fFLStZfo+B4V7Seyo7PUmN7rNv0qlGxjS7I
8ie4VR3XpOZxoGr+isbVqNifqs5Lq3GuKFsndc6nWcV5OZ2Olj0ud7hMjQ7yWmqWGeJ83VFz
nJ2OX0qOZ1Jj/0zzrs45uezcWFUuqHtObNQsm9UdZ6NGea9qf606RpWNv2wc8cLBYM3zZNU5
VCrOb1JRDs06PPav1wqCayqg8ivhDfb5paS/bmQHpdXc77h09oS/rOR3toJh60yv7viyGsFm
1UZbVQDKkvyMLleckPz6u5x8b1ScDPX+t4shXXLDxWG1eeeSXNmcqr9gOnULT2VBalwW7a9P
l9yc5EV68NFh+6yglB48Gzl5k06nz5bvshvfYLLM6b5xuWB/6bMkLt8uJ+PRJmrzOd0vFxQ0
BnPGI9Zd188FaTd7u+j677RP7a9Xb6Zl+ePnN+WMs9+Na95q4uLJY8H9b5NbXknm77qcPJFk
O9rkuovrn7dO+t14lpLlV/e4btfZMJuSYXbYeBYtz44n85bOr/7vxpDOWdph/1u049uI2z/8
E+Oa7nfTBXu77L+xf5wXsfVy0cY1YtPzedJn02/K8oezpCf6om286tiW1TgeS8X/ejHeTs4J
K/mf5umU255Xa37r9s86XF+rVSDKOpyfTrarrINlqxusdjKfjS7O//s7yJduli1bQf86+0ZW
Y33UnXa385p1Oc4666fTfMk6HH/ZsHo83y7tx6d3U57sdn1nK9i3sY4CqkibSzwu7fumxB2A
XhnS56yw0EntqV71GraCjG6sekXipCvkjSQ1jE1XCBErpMzaONSoLL8kO+nGFYfNG/d0zrgk
KTCNJAXMEVv2IUvXh/RCSOet/3YrWGlgMGb9isT/6ufd9l8dzw+sVnW/FQbid10XsVb+lqSw
ueDyS3//RNqPl563ArfWxO1103jCAuYBF2wtuHE13UFEXN5P2LL7wmQZX7Afsv9vteXaautP
l/O1tj38YUjHkm1tyv671eZzQtqPut3v1rnO08stD07bdhX/s93l0aM2vrGc+d3uvp+34Udz
htvsvs8VLPtm12/Bra84/7tl+U3zcTpTBdvhlNvep90yj7ppxHU8Yf2a7tOvr5fYssb24ZOW
/3EfGkgCiBG3zzTdNpPm3YLL/7hce92yn3bDbHfb72kbbs7tC+k6iQHgZ11/n8eb5conuqXN
NeaSdae22XZ63qY15H5vdsP4QK8vKbhfSMYVl3HIDXfBxhmDuCeTfXjQKqouWH7MuGOAuP3m
juRYl+5np206Op47pdWk6ZQ7zt3jxvWIBZ1HbL1OujyccIXNYVv3X02Ovfvsf2eluGlM3IeG
3bF+1gWeCzmBqLhj/qI7hi+6bv3ue6xE2GbTmU0qkho2vpjX865SZNDOMUv2/1hh0ZdUXuxM
fm9Jhpt283mz9Tsjy+/9i/9ZsH1q3voPJtvJYnK+uujO23XuWfYVUGlFx5CNu1myn0hSqdGX
bGtDts76rWIgVh7Mum1Z3PHigqswmHbjiNv/DlvGcRvPzuSYOZxsH02X9yNu2nnvC9rt8nVb
cvz0x7fBJD8GK85zC27e+m1+mslx11cQLtr+ciLJI7+cAzkVX7NunHnbrp+fJVcps5Bs276C
sM/9Z5Nbn4tJGWnJ5XHcdqddnkkyrYFkn/Zmk+HOuWXfmbPsTbftb0nKIbHSazHJq343/EU3
Dr/9FK1Df0yZtf/f5MoZ55JtWnK2j7xtdjopp6X5tFRQ0bfgKjt323/OJJW9acX2Frcez1nl
ua9kiBXnl0oqIgjKehhQxeBoxE7Gx9wKj/3GrCb8sZrTi//TjfJvXaFlIKmNHXTdM3dSPJ8U
dBfciW8g2RAmk3H5ws2oG27JHWR35dRsNWXt32GieXq4pP+RmuM5XGMa96+zbTLuxK+zVOZA
jfGNluTD/R2sj9VwYJXyr+GW/YDbhsuuEK6W0Q6776kxXOb6jRYse7f6bJyZOwGPumPFvAvq
BnK673KF0Fjh0pczzB53fLktZx4aNsyenGORTvNHLnA94iobuj1W/bodZ0dz8jqv+zMh/VQP
8jteOZqzQvRd7ncMkm+0PJl1eT/vzgmb7Tygx/BnLUAcc5UKU7Yf6HnsnRZExoqBpgtSfSXU
mCxvKjiQVN6I9RuwcZ10lQ/HXAH+NTYPx6R9H1fTBbK6zIdcxdKIO7dN2nLuduvevytpxlXG
bZXlzRq3umFiIWyrqyBrukqmhaTiUpICY9otLejeZevkhKscecbN86CrCBq3bWm/LcuM7Q+x
wiius09ZpcItSaVRrGxZcOOM62G3bQuxslCSSohbXL7ucvm/1fZBzeujBUHOaEnA6SuGJJm/
+JlXeXPClm0kCcRH3H/iuLa7SpgYCMZtxudxrABpWh4vuAqwGbfO5pPjxZTbZtMKsgm3vYza
/njCjdevX7/O04q0tIIyzu9P3PRvcRV8kszbjFUA5uVrWkE26MqL55MgJo5zMAka4/a3kFRK
xWUYte3yuWT788uY9+CKvQXdB9385T00ZyDZ109YhfNoUtk8n7Pv6zr8aRv3eDJtX+aeLzk2
V73o+gV3QUAr6m5wx4Ftbh2edZVve22Y8+44Pu62m1gJ1nSVTeKCUUkq9gZs2vvcsWqPnQvi
eNKK6XOu8iNWcJy2IHOHqwBbzKnUuOziolgx9qaQfqzHjqp7qMQOagdsBaZNJg7ZDD7ZYUS7
JedkPFBQcG24g9loB4HbnpKN0w/XqCg0d1JAKbuvK63JyGs2uJQc7PIKe0slV4AWcg4e/gAS
88/fd/KUbZBvtHGcdp/32n8+Y/N9g7vKNelO7nHH2u9O7E+5HWim5Crd3qQ2/R0WAOn/v5FT
UBB3YB8v2Mn32gHlmOs2n9Qui5unebeTb7f/n7DC2cvsP0/bOtxmha34OoEhdxDxBRBfm161
DTWlfYV00R0wpKQg00xqLCU5Ufha7XF3Bcxvh4OulmzY9nX1bfvddAWzU+4ksi+Z5kE3zCk7
LviDdzxwPp8U0GZd7e0edxVq3vJ+wB0U43A6P//Whv8TWy9nk9rRKXclZNYdmPtzakqH3UHV
16hOJldVFlz+LdowsVC+YOPqTwrEklx5aiYFpmGbznTOuh61z2k37ElpX8mdTU4ucVlutm30
mFuvzaTWdaurIY/rOJ6UNkv7Cnt6Yn2Z24fiPnXQ9Y/dduYU6uM+6wOYuA3G5X+JHQfi1duY
DydcgSZL9o9hF6zGQDUWFOLx7kY3rqpKjMNdBob+f6/LqRRYjcqT9eZwjUq/IzUqlDS/3r+K
FZJF525fQVNUkdrtvYKNpIJiPmceyyqEptw+sNYVdQdWuJ+ky7WnR/tcnfXZSbmxqoIvs22i
1/nbzfZadx7Ww7GnzvMOlty5L5Mrr4ov5ZR/Y8VjU5ZffU/HMZ9UcKQXZuZcucm31mm6gGzU
nc8mk0ogXXefrgqoYrOKd9rMfVKuvN9HC79fLSjYlmWsjvf/hPTNkF7lavymkloLcTWCsaYl
NjXb5WqmfK3foKu9iQXlCRcAHrOCyRtcre58UhsRCwU6vseskPHm5AA7mdTuPOEKMbdaQSNe
udts/XS4e9xKFPtfLABP2PdT0r5cf9EVhOI6WcwpHC664ePl+1gTJrL8vht/P09cJw/knCT+
ssaJI+2XNkepagaad4lZTxy/ZbWFdW6KzhvnJslvElPnpty85apz4zhaHl7l8ev+9a6QPpDU
2K+l9foUysdX+P+6D9LJKyjV2a+iTclJsC85cc4nJ1MtdNxkx9BzBZUSaXOw26yyT4+lfyGt
Byd9QZY33Y7B3EtdbadYcHlKljdh2+kC8ab7PeBqxy/Y8etgQUXS9S74jM1VY7PwWCmzzy3/
vKvAERvmhFV2+UqLCTet2MwzztecVYY9b+O+3ioh4jyeTSrx5l3lxnlZ3pT2ggvQ75L2C7bj
NHwF3/dCeoWVD4Ztn4n3J0pyFWPUzs9zdk68x/4Xm0T7go2vRNpn0z3t5quZc0VC3P+mkkqV
I1Y5o+f0f23jOG757itcpnMqWMRV3qTn4ljR4Su5mlbuGbF8eM4C/kGbfqwUabptbtbmZ9K2
6VjhsN9tgzOuoDdg5/0hW+dpU+F4pW9e2k3H9ljeN912s91tT8eSypudriLtKXe1IDb7PWT5
9wVb/ttd2edv3HF7d07F4/GkQkynpVeXv+vmL16R3uYqgIqu0JZVlG9zy33WVajFvIqVfvra
oPutvPsF+8+MlSXHXKVUrLzb6faZtGJxPsnbeMvBWVdhddKGud7tn/r7ta78Ga9exyu9h3K+
x2mPSfuK4mgy/c3uWBSvID1XcQ5YSPatuI0fTIKd9BjtW6MNugqx9EJDI6fyM25/jZLK5kbO
xZKBkiC5V54QKW/yF9tr3mu1wF9O+t9ukdlD0vn7p7Q5wFuk3T481h5PyvJL2vFkHJslXHQn
bX/5zT+JZSgZrsiHO5znToZ/qAcFnvEVruC4/BPJOq0avptuvl+nN5antRfHbOeerPh/p/Mh
Nce3khtf14Or/WjdXk6/bFzzsvyBDVd7nrsJrHvRXr1X897JjfhZF/t33j7kj0d6LL9UcB6K
x8OqY+JEwTF02r5/sgcB53rxiXUwDw/VGOZoB+e2h3tYMdAJDcbeI60WBw+uUaXJtMuHiQ7K
CD4/n9xAlWq6TH+6wbd3Dag+VLBsa3l+TctNvkycd5+puk7aFe3bLIgXC5x8S47bLKD8luQ3
9S26h/CiVW7c5ILK2CxvJglgz9i+tdv+4wP+GHTd4M7zGrz+0H6/2sr4MfB7ws3HTheY7nTB
pm85kRdo+xZWzaRyyleC3eGCSN/sdNwq6yofSqHRcHxc+qVkBb7RotIvd1nYz9yBZTo50JQF
BXnBgb/yxcuFN6b0McezZMmK83GjT79qXH092t+zqzSObAPP+0babkeE91ChmJZttEXMyR5W
UuDFJV6BvNov9i2r3F0s+C6u/J7J8od5peXroyuYtzqVXrLCCoGjbh/dVHH+9xddpGDf9i0o
4tOVi8aZ3ls4kMQwjU0VB494ifbbOStQm+rplYQT7GvoUc1LJryJHN1vO0DRiXWUbEABrb3X
+/fGyApUaL5IlqPs3WAiK2sxIVL9XrqiQLHuu18zqX6vX3zyeKNmueFSwfjyAs/cZfBXqPRy
l7bp/Y60m9nd7SIwTy8LavvpL8rypnnASvkHJQBF/GNmOfagKqDaTDagQLyX72RJYQt4Manz
HrGVBGnpuLp9p6AUBGh1/7/Sd/51lB/xZapvDem/SOtGta9J66luen/Urdb/1a6QqwHUr0qr
xu+/sV1iFQrKQBltvqVPAaR5L+rw78kBUvEpYHM9KlgCGzXAWo0gbbXncd3sq/EKlQZO8dGK
b7HUdJHm+92Ma62w3sj2u7Ky9pYA0KnYfGtAqEVGPfFGYgJw5BmyY8oNrpzDsQXeNln+OhSg
MKD6qH3qk/u0naBe+tYnceh7R553w8fnsusTQMbJPqxS4YerVCgSm+dwTww6Pa70kw3IoVcw
tUnoQbICiRhY6+0vFwioXlTrVaTHlSbxoRTajO/35MpHLdbZ0Ho+U7hmg3vdjm6S5e83ADy9
cVTfezLFcQc16dXMIbIBBfKagnJsgafNQvUq1RayYkNLX7e0KoXYGBwVvYy16EWOQK/EFw3r
+wb0mf7nyBLk0OOPvsZhiaxATfp43j/imIISc8kxhoAKXnzpNl48er6PbyoYcZ0nYxBYYTU2
7qPCvXkoN00WoAPaPP19ZAMKLFh6bLUKWtjw5ZK/ltbtL6fIkg1tMYlfet7kr9tIjoMOgKt1
ggOAXrgY0p+F9DmyAgWOW4qFcc5DlCOu8P8BFR3qs8JY7XsAAAAASUVORK5CYII=)
Рис. 38. Любое число может быть выражено в виде преобразования единичного отрезка посредством растяжения или сжатия. Если А – это 1, то B представляет собой 2 (растяжение), а С – 3 (растяжение). Умножение отрезков выполняется путем последовательных преобразований. Например, что значит умножить 3 на 2? Единичный отрезок растягивается в 3 раза, а затем еще в 2 раза, результат – растяжение в 6 раз (отрезок D). Если D – единичный отрезок, то отрезок С представляет собой 1/2 (сжатие), а отрезок В – 1/3 (сжатие), и умножение 1/2 на 1/3 означает, что единичный отрезок D сжат до 1/2, а затем до 1/3 от этого, давая ответ – сжатие до 1/6.
![](
AACpE0lEQVR42uy9CZBdVbk2/FZXpztdnUBoQ4ZKhSQYk0AKIUyCECwGGdSAYhjEy6SAoJfL
qAwqkwp4MSryKRhUglxEJQyGe78gmFCXgMEECJhKCIiGkEolgZA0Sbo6nZzq+vfz72d9+z2r
9zndne6zp36fqlVnHvYa3vW846oXg8FgMBhE6nlbx9vOoJXU8yX13oag7ezme0rWpQZDdhe6
wWAwGAY2ShX2iFLMnrHTe26PoG02wmcwGPEzGAwGQ/YBC97lQTssaPOD9nzQ1qrXZwZtXNDu
8UgfPndI0MYErZmfeSNo44P2ilS2ChoMhpwQv/putLnuTPz13WiXBoPBYEgepwbtR7x/RtCe
U6/9i881Be2vQVus9gKQvseDNjhow4K2IWitQZsQtCeD9nWJLIEGgyGHxK9U49cNBoPBkOwe
ALl8onoOMX7Hq8fuPmL+Pkni52Q5yN4o3m8lAQTpawza54I2O2gLe2A0MBgMGSR+R0pozof5
/kNqcToYeAy1v4UVNLwhQfsa7z8QtO1ibgCDwWDIAvbl7RolnzcFrU1CF+/koB0atJUeYXwt
aHcFbSNlf0fQLgjaNyVy+xoMhpwSvy9wMUOrgzl/nYQxHRAMLWwQENcGbZb63P5Buylon1Ka
4bUUEDcH7UEbBsMAWm8lMeuHITvAPJxGpd0p5bdWmLt+AgeU+b2Cdi9JXh2V+Y18D/aI9d58
vyZoy0gShfvG5TQc4HuWx/y/84N2VNCekdB9rNfOJUH7bNBuICl1v+X2naW8pq0SZSsfzWt+
XKI4xpK6zr0ltFyu9v7L6KAdFLRV3ufQD9NJgtdLechTA6/t/aDt8H4rDi3KqNKTZBsNXNN1
vOZf8vdKvZBLPtx/3xEzjnGfrY/pS/R5Zy/lXVxCUakX/dCb76/fjT7qSUhbKYZf+dfk1ktm
iR8m9sG8j8U/SEJzPtDovfcUj/iBDJ5FwvgS3z9Nvfdh2wQNA3CzNRiyoIhAnt8iocsWG/QS
RUAmk4ht55zd7H0WxOpckoK1NAQsCtppfM8ijxxdQ4L2bUX8JvN7sAkeQALlr5HxQbtYQne0
9ijhP54poSv6zaB9S30ORobPSxibqIkm9p7fcF8ayc/4sefnBO0ikk19zVfR+HE/CacD/vfv
gvbnoJ2tvqee13uhMnLUK2JwXNDGBu0tCb1oR/N6Xg3aPnz//BjZ0cLPvkiCeogi1UdwvxVv
H66GOo7PyRJ69ITfOZMGm3eCdrWELv5KisM/OE/cuDRyXvjAdx4etDu9vsV3fDxoTynie4WE
Fui5VWToEBJUEPtj+NuVvI5x8rdEQr8fifvmHpDBklIEPqhA3oao/tDcCNc+m4rAzjQXfk+w
N5k/8BwnvwOywGC9+zvvv+19dhFJI96zgRPiPgmDifv7OvpTKzAY+huDlXBdbd1hyIACMkPC
WDzgdYkSM5x3ZkcFmTqJZMzF+GHDHS7lsYGLvD3km5T/m9Tz2BPe43e8F2MxKqnv8Y0M2Oz/
xd8c5n1mIg0UeE+7+kyHuj+sgiUG+9gU/qeeJKZM4neNi+nfk/n8USRyJUWOfs7PbmU/j5Dy
+MqFFX4P5Oln7DtnXAFp38VbR+R6ip3cj+dwbBrV+DsSfX3QvhxDZjBXfh20v7AP3mT/4bpe
DtoTElpI3ff8iP/3XtW300icMc6nB+2hoE2lQgCFYqVEIQbuN28gcR/L72kj8YMic5vEW63d
Z09n335UQqv0hVQQriMpK6n/9aWgPULlQeN89smd0tVr+ZWgXUqeM5d9Bv70A35nMxWOVDW+
nkAH8P7R64RK9x228/kWNdBv8naplLu+RlPbmi/lZvtp1HB+GTPxgNupIZ2tnhvNjt/oaWdY
EB8L2gqPcbvJ9ESMlnU+J+KdUh7b+GVqvLP4Gfc8Jt9B1J53eNoJGP8W9snuFDrtyWdG85q3
90Lr68scKvXjPKz0XS3SNa50Z8x/aOFtbzMJWzhmz3tz8jjOq3vVmLm5eiLn8ErvOrDJbeN9
p41iTlxO68oqCofFppwYUsZwiVygf+IG9XP1+heppPh7xTjuC63cMOdQRv6CVqcFynro5Gsz
LTjPe8+P4PNXVlgLY3nry2ysqUN5/xklPxq4buu41pardXY0vw9E4fcxv/VpWgrXUE5r7OP9
lsNU3vpu6gZ1/2VPVs0guWyjpfAN9s/BivgNrSCnLiQ5G0tDzOskt454t8X8x+5k3zX8/V3s
sxWcCy5Rp1ldT72yPP6U+/M0kupGz4p3npKnW8gj8L4m9b7j2BeTOGanevPsDBI597tTqHR0
0lp6CPfZPSTKN6i0Zx5C8tlGUjlMEW6/v0+lsrLRk/0t/D/j2Oc+sbyRr/2SrYPXvhffc24F
Mpk54nccO6iNG113G7773mOo8UxWi/sNTvpOPtbmVsf053uT8hd8/YGY35rG72v3nkcnHxhD
APB/7qdA0xrVZZxML8dcy+mcBI/w+9zgn8uF9i/+Z9cf0AT+Q8Jklgc9ITpHyl0FJU6WT3Pi
OU3NuU86KEC3exN4f2pWTui4uBoQDuf++MNuzAnnRmjm4zY24W+u9MZHx7iMpcV3LLX3DUrT
G6s0bvedeP0fUh774gjVcF7LaC7kfTk/nLukk/12GQXyVmpvJ/O7nbYVB1zHBWrjauP/R19+
xluQVyhB9HX1fJzbp8T7l3rzbhMFwTT+bwiuL0i868RgSAuncf24TXkK19e3YpSyL/DWWUmc
4r+Gyu0sT0k/WRkOVntKfR1l++oYi5nbKIVyVlsgP8G1/JIny4eoDbnR+67R/L3/DtoL0jUe
7yZ+5gEpd1UiufEkXuPTnrycThlyr/dbU9mH2l3pSNApfPwLz/pzM2X3hgoWP+cqXcA+flbK
4yePZ38s78W4f4Lj0KYML27ff4z9sUiNp/u9gygbN5BMraScv4rX/RL70blST1Lz5G1Fjmfy
/hL2k5P731TP6zG6ho9vYx8czv/wM17/yxXmkXBvgQy+i/MW1/uf3JfWeJ8bU+F7rqc8nxfD
Sc7ja60k9E3sk0m0QLu9vTUPFj83ML9Tm2J3PvAJ1BynUIN4S8rjD9Z45tsZHLR5nrXvOH4O
798zhshdx9+Y5z1/NAnHS55AuIaaQbvXDyfEuAJEDVqrN1iNyrr0sqflTebrbd53HcXbfaU8
BuA8WoJ8tHERfMbr9xY1yTt4LR/yerXGtXQ35oRzI7jv6eT37yJRussjfi7W5+ski61KSdik
iJ/vpumgoD9HXZsj/8er9zR6QvYpNQcukyjh6EO+dy/eQui+KF3jTPB/71Bkbo1ELpoOZdl2
5PpANcYlpdXN4H1/AZ9JIdrKhd6sXutU1pU24xmGlAHZ+h3Oy/ckStDT87XNIywlkpavct0+
5SlUn6MF6jXvt6ZzTTzhra/L+RuLKvzHaZT/q7hu9b5zPtf6LG9fGEXLDtb2t5WV0CmouK67
+Xy9Z+E5nP/T30++QLl2n0do3f40L8aCcxg/81Pv/+1BudJGY4LeO1yM430x3+diGusoJ52X
yY3LZL7vVYn3jFXC4ezHP3uyfQPlKpou3O1+72RFVmera7iRff9Vb4//C2X7feq7PsIxXua9
H3sBPHBPktzqMTqWsvoZXudCju0Yju3yKkaNGbSSOsVkpbrWV7x94gC1R9Qri/A1ykKtYwLr
1fh9n3NsMA06P5Eo1+EbknKoT303r7nFOcWb6CBD4/n4DonP2jmdn9ugNncXsPkjErKVarJ8
lvef94jl4byFhvB+jKn5CD73uLeAnDlca00f4/vx22965G4CJ9Nb3nUco4ilHqzB/P01nvAb
w0W9JkYLHakW9XZPGAHIdv4rtdovkdTsUmS0pMzfThh+UcpjPa7jBKukMVYba6HrpJGWrBcV
SfkehdiKGOF2MQnOAl7bOgrK/1Df9YwSfjdSADR5RHuGclXcxT4fTAXCuRJ2euSrlb8/j+OO
+fIwPzc45hr35pjiu/6Nn/s//I6V3oZ1NPu0TQmTBs55Nyd+4m18h7DvT6cgaaAAeYTfhTG7
Uwl8c/Ma0pD7e3MduqSO62nd2ZtzeBzlx4oYi8exJB9/8hSrUygH3PM6LGIKZbv2GF3J3/kD
rW9xMulUpVAeovaiESSZvgHBrdth3Hw1kTmA//05tcnreMKZvK5HPfIwhLJmjUdChijr0/94
1sMjFQG6x/t/B1F+/UzKXYiHKPnx2wpE/Xj2xVLv/zs50+qRyZ7s72dTHvrGh0YaWx6V8jCb
kuqTl7z973KJqntoAw7eP5HX+4xnDGmkzNbvP4eK83xPRrox+pnaw1s4f52RaUMVo8YoEtXt
itDXUVnR+/skzlshX7lRyXgoSV9R7y+pzxytLIEl/s52ZYFGXy7OggCoZrVroTXHBcFezKYt
Ukuka0xcAwmBM2uuUWRpcow16hA1ofV3jVaWuD/GmJrHcSA3eN83lYtgmbdQP87bpz0N7Bhe
4wKPELrvkpjnp/D37/KE3zHqef0b+5CU+K6CAxQZvVtd20fVRPEFmxOG3/Vew+89SOL3UC/M
/dqSdQbH6w41sesp4FpjiPEY9h3+/+fVGGFMzuVnrpaubp/jOaZ6sbt4HbhhdHDuyyR+y9X3
TGH7mnKjOFI4lP9zXcw1zuD/vV99rlVppOu9+ac1/kkUVGdRwFzqvd9tOPPU4t5JgusW/u/F
ShgZ0sdeSra9zs3bbVLVrBFO4dpA2eTkQx1le6t63uEcrotX1To8gLKmg+thZ4xMGq2sSkfE
fC8+e7snQ/CZq/g/Fnokx7mnH4r5vUkSeZZu9sjGdL4+y+ubLyrDxFXKeNHO7xpHMuVnQ5/N
/vNdwyeyn/5QYQyc92AHCZnLaN3JPp5Gq11v4scvoBxdEKPUD+b33RHzuZPZJ19RJL+O5F/v
4yXVh+7Iv/WKsF3DvpjvWZaPIcF63rP+fkp9H+Ih/6X20A7uiXF9N4TGoA2KE4xWRpfHY/pl
HPe1Nn6/i1G9rIJRZZT6rs1qbE7h3rCG1t9MaH7VMEp1tLNUrOWguwKda2I+N0Z97mE18WFx
O48DpBflFezUuzwic6JEbrOnKmiDjVzI+nNf4vfd7ZGX06ndrvBI6rmKXPqL9AR+5ukY0/8a
tXjd5LqC95d47z8lRttw39NMEqJr/zj3+hPeNTth2Ob1oVs05/O1J3phTXLffYwiRf7ice4U
X1sZ51kx3Xed7l2v/v8ncAHO8YS8dsPo8Rnp9YWzOmhNuJ0E6wfsz4clPvnjTM6/3yvhc7Cy
Kmu3wHT1WGeyr6Kg1VYNbbW+z+uj6UpoPGqcw5Ay6mhtG6oUns1V5IJ4iu0Uygg/JOccKm1+
Pb1rOfd/661ZpzAuqPA/Z3DD/QNl3VruBZ+UKKZsTsxnnDV+hZIvkL9fp7XvqZjf2p+ybJla
/9tppfoBSci9Xr9MZV8uY/+5OPbh/K4NMev909wDfyvlsY74PVcG58EK/f8Wv3OERPHmTWqv
blSypyenaO2v9r77YsjwmxIduecTyZnc455S//NIiRJ7fAPB+bzVfOETErnJ9f59GA0DC6T8
vOhTeZ14fhHl6olUXOaRcM2tMG9PJkl/VO1tR3Gu+CELozmPnJyHp/FXVPgfiDF0ud8Dod+i
yGqn2qsaSXpX5oX4DY6xVMAdtlG6Zt86uE0fHfdL9fxH2QFrPCvgSR65ct83Xlm91scw+Olq
Y52trDfnStfssUkUWmul3Jd/tERu07levxxG4um7Io6j5dMnSJgkByrz8KUkYRs5QTd43zOa
/xW//Tv1/B4kzqskcj26/t1PWQg3e68dSffHgt0wJw/h/+1QpFWP69yYiY7PXMTret77rouk
qxvc/f9p1IRXxgjsZZ6lciIX7CqJ4oBcv2HO/JAasIvtE0+D1P1zPhchhJI7UWCy0vSf8v6P
Ez4XU2D/jO6Hn0jXWNep6n8u8MbYWS1uz8rCNwxo7KQy1cz1/lwVclBJRtwbY9FpVnuEU4Yu
4F6gZeUQiZIb5lZQ0IZQSRMqgos9wwLwsvqs+70zPauetva5OoNxJNeVBJnG/4nPbFP74F0x
RO0EiWK2lnqEajnlyUpPif0B5ZTvQTpO7TXPVuj/xSS9+D8/lijMaY1EiWqLejEP3NjM8yxY
7hq3qv9Q8v4r9uzrvL48kUT0bu/9ExTBW+gZPYD/8f7XJzlW90l5Us7ZHKOLORYNnCc7qcSs
r6C01CtDyuyY5x72ruMgibxJbs4ulSg/IW6dTOD1L/HmidCwsCHGqphZ4jeNE6rDs2BtlqhM
iP8dGIwvK7KorVvOteAqqTsm7szbfvbO2ZzM98Z09Mf4fc6ff6iUByf7pOxoEqqfes+f7AkE
XVHbWe8WekLkbCV49CQ7U2mAb5FstpFEOOGnNaGj+Pz/SlgIUmvPI9TzGhvYRtNMPl+R1HN5
Lc9X0dgrTdzpEgXZPt2N1q8tWU77X+e5QNzz73smfNd3z3hz5lIl5Ld72p+r/7RdEexR/K+3
c9ymkcS9SWH7Vsy8PJfj83tlrXPW5l8owVEvUSLOfZwvEOI3UpuPS5o5To3lTk8ZOIL/9XfG
OQwZAGSHy7KHIvq3HuwTWL8HULmBheUfMcpNq2fRGcNNWlvYgb0pj1srKGhOLrsM1Te937qR
Sp9fjmWiRHFkT3tE7ET+XqUyJy+QCLk96jSJDhrA/3/Ce/9MpcAu9vZCkNpdMb91Kj+zQKJs
UHfNl6q9pprMhpw9hP2APvgWyc8tNGj0tCiwPpThcY/4uOoEQ2ml0jH8DZSZGzxjAPr4Qsrd
F2KsnNiXb1a/AyPFGfwebTUcrYwGel6Ol67u9p38vlNIqK+t0H+H0ZDynlL4D6CRZJWag278
XPKGDhPrTmE/hGvqZm9cT+Frr3h7ZKaJ30h10X+r8Fm/k13tH5GuMQP7SRQDolP1OyUqdKjd
uFNICOPq3XyJ5OgrnDiu6KSrI6UXagsX1i7F+J0QOSGGiDgT7TiPOOgJqy2ETrhM9TTAvUkm
fk9t4RnpGqjqE8sWCrY6Tkh/Ib/Fa/4xyZA7/s6Z+tuk50kdGs4c/bRHvNy1vR3zX5ywetHT
vM9VwrLkCfxzJMoW06T8QPZpHCHU2pITDC6+Z67qw2pzeyoX4Co1B/bm4tduZ2dxdaZ+l+Cy
XqJSNYd5c9JZOEW6nk06WSkJ28Xq9hnSBdbUrRJ5Jl6V7mte6hi0OjWXHWYoi45fwH8QP7+B
v412GWXNBsqWDdI1xOZSyuFZMValaVLuDXE4gzL7j97/u0CixKpKlQ7cHuTkyRLuU83c/5ar
vnC19DZ4+4l7DYaP9hiZNFMpk5s9pfFoyu63u9mvkbDyTb73W1SUnZXvj70gfoer33zPew3X
8EOSlXs8eXU0ZeZt3jW4vr/W+w9u7231+v4KGnyuVcYBZwyZIuWxkY5sbpWurn23d02TqMqG
VlZwez33xz8oK+7HOba/V6TO7XXHStd4zjWcI80V+tOtjaXefzhfomzwnVkRAvXdaIWuZEVc
DEilUzI+zQvd4LHkIZwwIC5blEXRBXGu9Kx916jFKDET8wQSucfUIt8mUfmB1zzTrTOj+5PM
1S/yf1+4oCDQdCHGdoni4PyJP8rTANcrArlGyl3MLiPZJ5CfUCTosQpjM58EBP9pMCf2cBLB
bUob7ynB0OVJnvHGE0T3ES5QHT8xgcLDz+pyQmyZp0m5oqVYOP+tBJyzAmpLnNaiXMzI+55g
WCblJRdcAe43uWhLnnJymUSZfu43Lon5P6IstA95/6dN4gt9nqyUlFnenJ/OefOAcQ5DyrK+
RBJ0sVJuMdc3cq5iLbiamO5cXC1HpiurkzvuDbLtKj7/vLe5nc7v7JQosaNeopAMrLH/4n6w
RKJkqS9LFGbhh/84S/yvPPnboCxY50pk/cea/yqfH0vDwItSXhYqTla2cn9xyvaOGKLr7ydO
/rm9ZrMnL4+gDGnm/jqY/+9G1SfTuHe+JeXn3Dr55iyoF1AeXyJRqMoLvZgPJ0t8CRd3DS4Z
x3fDO6PEEm8vO5v/4XHv/Z9QVs63Fbc4SRmVSh7h7/D2oaNpONFxpaIshOd6c0WP51doRFoj
kTdJx/X7rvFTOP/98Ie3uffvE9OX07j/v+TtI65sT6vEu9IzSfzGczPT5zdW+8NaE+qgyVPH
/7kYEGiLH3gT7A8eSXSHaL8uXZMq3MI7kIOjF6Rz/65RzF6Uyf5d6VrMUThpVsZY/H4iUUZz
q0RV1TukaxFPF8c1z+srVw5nladBXChREUgtgFx6+SKJr8XkEjh+SPLzDRLNm5WmuqOX8+DT
EhXc9MsEfIH/s8V7/hASIK2RD6EgalQacr26dXNDx/UcoKyAft9drxbnDs8K+7K3yZxHobhA
kS8diHyelLuWsPhP8yyu2pLZKV0TdF6lENkWY/nEdz/ojdnhdE9AiL/TSzJuMNQCZ6r7HVz3
P4p53xlc13HeA8z3/bgWx0uUzbitwt5SR9n3OmWwcK26xIS9aACYQQvaKUrR0sXddW21Td5/
+gjXmpPVk9ia+LsTKMudnLhAqmfXN7H52cF1JLROAfePe3NZvrNjlOs9uQfOkcglrr1KjRwL
tK+p78BnfyflWcdzJcpUFY5Vew/nwBCJPBGTJAoZ2kJi/T3ODb+Uz0zuzS/FGFZcQs06NebC
7+6Q8kzqS9S+er6yop0oXd37JRL2Dj7X4lkCr+L8iSuR9gWO9QaJTkrSBoWXPBk/hNcIb5Tv
4dzJPe1Aks31MUT5PfKPwfyOU9TeP5OkcIn0rsZi4sTPLbC1Uh4vUQ2TSbK2KO3Dj2F4hp04
hItdYjSOiVwEf4nppCF0VdQpy44o862LpduuJsdMRRgde18qURVvuIz/U6KjbtwEeV/Kj3s7
khNzmZQnMzitxk9McCR2mGdOb1DX/qqUBwzv6xHK7Z7WhYKkN3ECuYKXo5UAeGg3yIUrozLX
+2yLslg96/3/mRSML0p5jbwD+f6fxpCvw2ldm+eNWTM3DV08+RSJ3LDzVP+4TeEB7//sp9wd
eq6AVP6Yc/IrEsX+nSqRm0mb513sDsbrn14/ba9gfcZiH8TrG6vmwI84T9/itZ3I712QJbO/
YUBhEWVYHWVsqyI6moAMoxXnBTVXHdkaQQuMO4rqD7SSvOARhQcon1q5ztap73pC/Wajeo/b
D44gkdlDypPYnube5B+V9QEV9Q7K5h1SXscT628Mv2usJ7+rWcRc+Q+dZHAMSYMfwzeYxoE1
0jUpbwPJ719oYXVn4q5VY+DKRe0r5aWkTmd/4H3O8+Lk3nKS76ZezAEtexzxv5z97Y5oWyVd
E/POlfhTTVq4jzqLrztZCf/vX5TJj6j+O1sp1idxLnUqC+cDnjHkLfYjrv0iPt7IfnInVOk9
5SYSzjr2++Uk726fcskjvnFlH/bHavX72ti1iN+7n3f9m9Secriad8NUH/+S13aWVD5RKjXi
p0tTOM1wvZRXOC9VcSMIJ88obtDtauI6c6tzdw6VKMD4FG8hu+SQgyUqB+ImwzkS1df5m/cf
TlHkUpOCaWrxf1NZ9ZxWcoREGVInk+DFXauzED4tXY8vckS1FGMBFSnP6JmqNMObuBDWcTJO
UxqxPjj6OC5QRzDPURbEEyXendxbjJQoPlNrRnd51spT+d+WeAtgFD+/WroGw7rCmw95RPZ0
9dlHSYpcHSznUtBkuln1+Rj22xUS1dabq6y8v1Dj+gspP095Jsdshfp+F4/SSAudXwjUaemf
pQa+XZFV/K8rueEM9dbW8RIVrIagP1ZSrtxuGHDQm9cqrjFsoDdwzh5EsrIXlVUh4dEk4QbK
onZungu5Rj6ooMhsjlHqHapVHXiQMnxUjLJ1KxX+nTFkZnaV7+ztenPhSs9IuTv3A8rmf0p5
OSenGM5S166xkoSxmrVnsURHUvqfdcX9F3v9e4lER6K93wvi97yyitZx/+jgtbSTZG71lOgR
3DeXevwB8+AyiZLX9N54iffb50gUFnMe98LraDBoIkmc7X3/K5TRrrSbI30TOZd/6M2HR8gd
2iiT/ULLQyQ6YUrzF1w3XN+3xawbZ4GWGMsqCPItEmWb76EsucvV47jTvDJB/HQBzKM5yNAm
dP2lrd5n3OH1QlPsK9zkbiXTFkXqdHXsvZSWcpbEp0q7DdOREn2m4XveYLuCoL75HELtSf4H
JAPcyE36PYlqv+H28xyYKRLv0j6Sk0ika2mZPXjruwadJdA/EWQwr38ViYs+0/G37MeZfG6z
IjKjac10mcnufy7lWG2W3rt5dVmc/5Ao9qGDrok1Un46hSZxT8cQY/ThnTG/MZzXqz9zDMcX
z/+KY+wSQ9yceV6NxWYupCOURqcJ/NWqv05VpO9+Lua4cV2knptMsuusn75gX6ksHg3qOVet
fhktIB9X2vz5nJd13lowGNLAC1QifRm2Xt2urEKeVveAuPUHPoixTokiWLXeE6/n3rZCotAf
93/mxhg83OP5Vb67p//bl1HzpWvmqX7f+pjx7A4gqEjcuEBCj487Tu9EGiu0XKznf7+NBgud
6NJATjC7Qp+IZ4RxxpnZ7MtlNHxM8Ah6vdfnX6WMXaAMUXtzH/Xj/v5Bcr6uwvyZTUL/jvpM
Pd9/dpU+w/ufU5/TBPzWPAmBOFcvXG4zpDwA96wq3/GmRJXCN7PDH6MmMVxZaJZRYxRl+v4G
f6eZbThJwnp+VzNf/7EiJ89KVDduh5po+J+7YqxNeO3r/J71ygSvF2EnSeGZ0rVqu8MnlYYQ
h44Ygbm/RO6C5d61Q7O4m/9nFNtqNVkfl+iItHpqU/Njrs2Rj1+TOG3r5RzYSWJ3JknYKO/1
52O+c2uF71pCkuW7CDBOqKj+odfvZ3OMn1Ka8r2KFI5XWqQb53sppJ7jvJgk0VFx2h39W4kC
hZ3VuEF9z7t8TQf3OkXkLokvvfK2RMVodSiBb7pf5gntpbyex6kArDX+YUgJO6W8bJFGnXQ9
v7bUzf5RquH/7EjRMrpZyt19fl24ap/t737xx8P/fXeM6jM9JID1npVUW0ohq+ZJ5N2o90it
Ph9YJ5/0ZF44ZXyBZySp9yyyDYpsO3K5UsqPeO2MIbzuN4dSlu+s8F/05xrUNXRX5eQx7ocf
VPjeOENavXebSeLnmP13qQ08xOc30pw7mJa1S2mafV2iwNeSYuzHsENH0UrWSnKx3mPJPS07
stzTOj8Woz1hMh1LIro5hpHH3de4kRrN9gqTGJv5S7QUPuu9B+b5N6RrKr6LcenwvhfX8EVP
yKyM0a4rTdbR7NsVatLeTO1n+24I2NkkL59QZOo9ajZxaegQMPtK1/Mk51fQeEtSXuvKZamd
w+dWxFz36gpCdZkiVmtIrP8Rc934/GfYJ+tjrAdx441F/VHpmu3n/vNEPve0+q6exOrNkvJs
X4MhCyj18vndfV9v9iO33iCD2qX7UjNp9FMp4X6p9vvYC35Da9gF0rPjIEvdvLasm/eWevnd
blxnUtHfJOWeqVLMntSbx/53vK9+t64b0rWzF+O2vZv9tVpfZSqprxLDddk5SyW+evhcahn/
lPJDpsWzprkYhL7+R580bK8wgIv7uLgqZdHWkxRMrzCAlQjPVqls+t/didBCMgbr3Bnq+9+X
rq7J3vSxi8fpIMFZSsK+OmaeuHpX9X3o7/MoBPxTP3rzn7srqrmsigYaN96lbjYa9PfZ0tXy
ajAY+o/goE4mrOMohv5vYpnw1UjyDIlCm9oyPK4gqC705ggakWrhsoeXDXHz8B5eLBZL3SPi
50jOTulajdwnNHOrvO4ngvT0wOjeTHjpwe/25wJzBy7H/UYlc26pBv9pT2rDIE1jveuu74fv
Xyhdaw71VGHoqRBAvKJLenlHyos59+Z7etK3/dEn7vsRvIu4S5j8r5bq8TwGg2H34I4lQ8bn
ARJfwN9Icjk6JBvW0UrYj/sVjAm3S+3iNBFD6ELTDjHi1/NNsT/M2tW+A7+JrF0E8d8n3ac2
l/r4X/prge3swfWWEvpPDgjKnd0Pv1Pq4/j2BnDx/kJpqWtk90ublPrpPT3FExKdKQyXOOIz
d9fKajAYuirsSKJzSYEfWtd0iw62RmUIyCIQ04eE0Q01JmMu0xyKA0LS5knlWD8jfgkCtdR+
xon6qmSgpk0O4ZIQXs7hf3clYjR25OS/w8KHRJSLSf6Q/f4tEygGQ78o2HDTuXg1bN44ltOs
fd1jEG9h7Xo4g/LI5Q4sTuC3MF+Qkf1zCcOhMIceNBmdLvHDxPwhSR+Y+ByJXKiG3mNzDv8z
Cj4j8xcZyEgaeiIHi1JbJG7mf0eGGrLFnxNz+RoMfSV92AfuoEKFWLXLSRTMUlMd6Ktd3FMX
ZrSvapXtXElWg+i5I0xRZmWt7N759Ub8+vgbzoQPbQ4lSpAd+2XJwNElOUSTt+jzBrhGL8mZ
QC95/x9leFDPahTn9H3ctMylYDDsHm6gMgUgFGRuzNozVEfWy0SVEvwNlONCFvERJIDdFc82
4leDgZjGDXIUycptNgj9ArhG5udUOOZZoL9Ai8T9nNO38PlbbaMyGHoNbNAo+4VYNYQB3Wld
0mMgyQ+u3g2STt3DLBsYkID3fyUsPYezj62kVoLEbzQ1OJjwkdFzsZhrrC9oZEP9vmrlSgy1
WzOuej82LJdBho1ric1tg6HX+8P3JPQEoXD6t6xLegW4NFGrDkWL2607yoBQgZ9SMXcnaxj5
qyHxc0TE1Zxzwfyo1zbPur3fsMW6IHFogo1YEnccGzYuZPri+Dld+9AIucEQv++UuCFP4bq5
17qm1xjCW1j+mqw7unAQhOCg/i4SPeCleVzKjzs14tfPmyMmJEz2Lm4DJ2ugdpvFQfUdQ0k2
UER7mfVlasBxbzgqD8WoB3EDg4aJMgLrJZ2seYMhL8rTJVw78AR9Q6zmWl8AN69Z/MrnmPPO
4Az6/5Iw5AzhOQO+sHMtLX43sYMBxPWhaONmm499xmCl2Y207kgViFNFHAlOubmB5O9UCuDz
xLLVDYZKQJgELOQIW4FVxrIu+wZ4f3ZYN8RykZVULB6R0PJ3ugxwl299Db4LTPuKoF3Dx9Dm
rvMWtlmo+gYQi2bJZ1ZvEcnfrRyPb/K5z0l4buZs6x6DoWyPcBUe7ueagcfiHuuaPmM991pD
PM9AvB+MT7+UsKLI7yQ6w33AeSDra9DJM7kR1vHx/dwAzb3bPzCtLptAfNLB1CixocHdiwQQ
s3IbDNEeoZM5oLh+29ZIn9DMW1R4QKiJucsrKxxzJAyPQkKeK74/YDukP3G+hDFOzRJZ+n4X
w74NfcOuChPbkB4gcBFLgvIBOHlgGpUgs/oZDCEaaBQ4no9R7cGy4PsHKDH1N+uGigqHi/dD
SM4RlNVQPH47EMlyfT99hzPf30lNDuevfkHsuJ1aYDBvEcz7qHVHptYSYkngToD1DxZvnFKz
lpubkXPDQAc2XRf3DcPAI9Yl/QaQGKuNW538OQUdoQUo6nyLhBm/Z8oAszrX98Pn0aETJAzU
HcXnnzHSV1MguQOJBONINgzZwZygHcoNDkoQkpxekyiexGAYaHsM9ggc13mlUloRArTCuqfP
GMbbEUH7iMmZHuEBCU/yQCLesUGbIWFpLiN+vWDRiNmAe9fV6oO17w6bWzVFI2/zfHJHETVK
5074KYUJFCEc7XaOWOFQw8BdF/vTMACSAkvf9yW0ulhpL0MagHXvBomO3UQ89iMygKow1O/m
Z/Shyz+R8lp98J1bgGntoIt0DrHuyNwmB7wdtIckzPKFyxeFQ2EBX8g1UydW6sVQ/H3FFfHH
MWzu5KZzpDyuz0hf/wCkerB1Q48BTxmyex8jAZxKGT0gFJHdIX4l1TmIZ3JHVv0haBeJxRkk
BRzZZmb9bAKkDhljiB+BJRwu+YeD9kkqRQ3WRYYC7yl640TcN5I5EIMGV++z1kU1AUp8WcWH
3gGKOKzPiPe7LGj/PlAU8t119bqYjf/gYxy3cxVJn5nuk1voL1g3ZHrzg3vXJeDApYAQCCvs
bCgytGHAncwBLJcwjqre9oiawSx+vQeOcIPBCjHZb8oACcmp78X79EJFqQpXdf0PJH3r1cI3
1A4uvg8lXd627sjs5gegjt/XJHR1YdzOopY5O+U1X8rJ5msEIb9KD+ql/VDJq1m2P9QE7vSm
JrGzencH8MB8UcIwtf8M2iaJEj0Ke956T4mf3ihg6UO5CrivOthJ5nJMHljkh0hYkdw2yOwC
JG+iRKd6QElaznFLE3tI9ksY2JzOp9KDhD+4z1zG6bygPW1d0+9A/OQI3kf85Bbrkt3iQIj3
u17CigwITXgraEuLLIPqe7mg91ekDzEbKMD5mhGPVABNehIJhPV9tnEnb0H+EOR+YQaIX5Zj
cetzQkwNXYGEs/sk9AoBCJi/VCz2uxbwQ0Y6rEt2G4jBHi9hbb/HSQQLW+KlN8TPZWeN42Mc
Tm+nEqQHLPL31Dga+csuQGBuk7BQKNYPMhtflnSOMixV2DSyBPzHrTZtcrWPuEx1hDacqmQU
SKB5hGqnvLk9ANbVUaYs7bY8xO0PJDx2E/MXJ8zA6reyiPtrb2L8XHZWBwngHJszqaC5yuQ1
ZFtIP0CNEmMIly9O9bAsx+oC2ZAPgPQhru9yPn5Jwri+F00xTQRI9jNXb9+4EOYo6vsdQwUd
WeiXyACO8UPZFpedBQb8HbHMxLTQxlu4elF/yI4Dyw8Q63QhhQpcvo9Su1xoXWPIOUl3cX0u
9vvbal7XWxcZcoAG8pvrgvZLch4o64uLdqH13byG9HC4pVxgOk7l+JNYxfW0xgn9PVY9f7B6
3pB9IN7pWgmt5c1sVxjxM+RYLpW4YcKC7eL6/izlpaZMPtUO7bxF/P2JMsCOHutn5cUB8vmz
VMp/zPubi8R56rvpiH0kPHcUGlwj2e+tNkdSm5QwO98oYfHmOrXojYTnB3B9bZPIZT/WusSQ
U9Tx9gJlHIByc4sZBxIDiN4ZErp526w7+gWYu3D5InkSXrW/BO3uIpHqasTPmT2R3YLChijj
Mq8HnzPUBkOoVY9Tzw034Zq79QbSdx+JHwKyX7ZuMeR4g5xGZRRAXN9XuW80UEE11FaeoP4c
6oP+UwbQkWMJAHP4dQlDcjDHpxZt4lSCW7QwccLfjViyt/icTazkgeN4kGCDLC6Y9VFt/CGJ
XC0Wc5l9lDiOP7A1ZMjxfuHO4IUX6BYqo6sU6ROTR4nJE2BuzHOGvgHetSYqM+OD9sRAIX4O
IBk3SXjm6JekgIGOORknLGhnaoaQReZRmwnZ3AprgyGPc7eee8LPSP72p5HgKbGThAzFwdtU
ajZIWCZnhQygGL96kr6zSDY+tPmQqsB1kw7xBwg8fZPanpn3DQZDUrIIYT/Hq+ful6jSg8ki
QxF4kU64Wy8FC2/r7mJQPf9A9djqBKUrcPW4ANMljP2zqvj5BzbTayQMqZhl3WHIMLApIjsd
58RuDNo9EnkdjPQlu3/vHbT9gna2hIljD9sY9Oteq5+rV/1eyvvEqQaYON3Bz4jvsyNh0keD
GpNGPjbkGxMkjPtDEPGr1h2GjO8Zy9gM6eKwoP2G8gN7wcVBe0bspJRaEsJCWLS7I36I33Dl
Jp4XOw4mC5gokRX2ZSlYfaEBilEU3oCVZDBkffNzygoK3CI7fY5ESR2G5ID4M5d5ijjL54L2
gXVLzQAjC8KsxkhY7SS3fKg74odsLVeraYiNe2a0PFfSZSQF8GrrllwDsZqIoT1AwtM8xMi8
IeMA2biF958z4pcKIPff5X3s0/AWWKJf7UgfZPPn2NfI8p1fROJXT5LhMMbGPhNw9YSg4Z3K
xW5FtfONRjarj2nIC1wBcoT/tFp3pLZ/T1aPDxYr7VXrOQ/Sh9qJr+V94lQCjmtrsrHOHNqU
hgdYPEf+geBsuO93Sej2hfXErH2GLOOfJH1I+HvHuiMVIMlvhHrcYsSvZjwJfQoLH7LZH8r7
vluN+CFbSB8nhXMAEXxuQb3pjtd+vO+ObcM5gijpYvGX+UWLREfwWea8IesyCErJR4M2iAaC
vSQqeWEKS3I4SMLiwg5/EqvwUEuM5O34IiziSoC1b4IiGeNojTCkJ2whZD/lvQZ37yckx/EG
hv/nvh/ETdRgyCpKyhAAZQXHDuKs2FuN9CWOadyTnRHASF9t9+ATeH9MES6mEg7josakggsK
MUj7G8FIVdjuQ/InXOhuwZ9v45LrNXgw7zdTmC+0bjFkXAkdqZ47OWh3iLkYk8ZI7zFOc7rH
xqEm+69Obt1Xcl4/t77CosbtKer5Qbz9soTn9m4XM+ungTNIxn18PmjHkTDYuOQDLhYHcTqH
q+cne2vRYMiiEqpjy8ZLWGbKMnuTw+igzfCee95IX80UnY9J5AE9VsLDE+bnVU7XV1jUsCJN
8l7rpDXinKDNtvmQCqZ7j12CRyO1brMU5QedvIWrRrt3Z4jF0hqyjQlSHueE+Xu0Eb9Egfi+
KbzvPHKHmcJYM4yS6MQs7Lu59n5WsvhNjCF+DpdKeCD3+zYXEhe2E7shhUgSsCSPfMAJ51N4
H4kdwyhgvmTEz5BhnCfl8d4gHceZQSBRHK4USOeR+xzJie0B/S+nx3rP55pkV7L44aKQ3NHB
SVWnLBRgukdJmElqSA7HSPXkGpj+x9miz93ac7UydekkxPy5GBLT4A1Zw34xz02iDLLyUsng
NO8x9mrECLtEv3pvTzf0TVYfJ5GHDTiJsntxEYifw3heZKNH/px212JzIXEcxb6vhOESllgw
S1F+NMlpFCDNSnuH2+YIiWJICnM+pKEQaJHo5CBR8xZz+RKxYvK13q+d3HDxZs4o46x+2gVp
MqN/MIkyWQOK+gFFIn4uy9AV5xylFrebaBNtLiQKWH9GdvMekIdzJYzzM6tfPvBRJbDd+hpE
gn9T0P7GsTQBbsgKkHw0pcJrUFasgHDt8XGJ4s3ixsfQv9hfunrbIKMPlZyGN8QRv2PYkJ4P
s/29JHtbg/b9oP1AwgB0PG9nxCaDoRLGGLwUtDVBO4vP46ik60jEvylhTb9RJAtmJco+Didh
71TPtfO5AyjEF9tYGjKET0pU5ku7vvD4aImye23O1g5HSWTp26UURke+W7hf2xj0D8ZJvLcN
xphclnWJI37OmncPN573SCZwiPzjEpZ0caZmI37JYLyE5uYLJDyyzRG/V6hxYCwupkA+TCy7
Li9wpXkgxDu815o45otNeBsyAljzTlFzVrz72ByvlNDla+h/uHpyqCOH82LHUEbUcX9eJ+GR
YpeLudz7E5M9BcfNdxyziTIvuQuvqkT8PpTQaoSNyRUMXsOJ9RcSPysfkixBgBXon1Jucnbn
9mJcUMMJFr87g7bUtO7MY39q56v42GXR/yxoKySslwnN/kHrKkNGgBNmjiDpOEQpLpjDPyHZ
QLmvBySnsU85wOEch4PZ1z+i0oj+R8LluyTfYuSvX+CItga40B8l8rLlnvjBRIxjSZ7xLA/C
CYXYjSWcaF8P2nNiJ0Yktdgx2f4hYVyYQztvdyriB2KI+LCLxI7wyTrxQ6zUtRKGVkzhGN/G
cYPQtvOxDVnZJ6BAXsb73w3aFRJ5HhZJ6HlwIScXUvk0pbP/cTL33/WUF8J+fltCY81blBk3
cEzsDOW+YW8JLasIs0L4DQwwr0toYJkhUWJeronfniR/jvjholzsgDN3viihNQmT6zcSmpWt
tEttNY6zOSbbq0y0Ter+pyTHGUcDiMzDYruQxA9opKDZTkEOt43V9DOkDUcaYKFGwt+HNAQ4
vMnbR4J2jYRB74hJtlCg/kULx6Cde/dUtU9Ppyx5mHszZMl9Elr/1hr5222MolJ+Acke+nqj
hDGUi0j+viM5S2jyid8UXug/+RhBjc6f7SbbB5xI7oBoZJLOE8vkqpWWfTjH5c6Y9wxX72tT
z+8lBThIusBooKBeoLR2oSa/Q1lRQPz2kZyfC2koFEAm3vKe28bb5XxtglgMeC0Aw8x4CQ9Q
KHkywRkEEId/OfdueIDgCZplXbfbQDLTKu61gz1lCArPVyVMaspV2JtP/PanRreBj2FFcsGM
Tbzw7Vz8B3JyvWmkr+ZaHibe0gqvuUrtC6mVnM4xsQSP7JJ5EDkUu51LzbFZEXkIdrhnHpXQ
ZY9q/Hsb8TOkDJewMZtzOO7M8BJJCdy9P5ew6K0VdO4/IK4SxpaXY17bh/IF1tj2GFJu2D1u
dBGVcBBqFzPpSuksY19PzzvxA1m4WS1WWJHcOYDtiuAhru8LXNgW41dbwJoKC+zbfAxra4dE
6eXuFuQPiQAPS/lJK4bs4TiO20JF4N16dJm8cKUhnnaKdZchRcA6jXCDH0powYsjcjoj/TkS
P8zbGWLHuPXnXg03Okp4vcDndHjPcGUEQAzmjRJaX+eKuXl3lxdBFo8l0V4rUekcF+bgCDZO
UbmHSnwpTxcoitBJhYkyXKLinA1ku8uqvN/QP9gp5TFe7exrEAeXeAMLEtLKV/D9Nh7ZBMbk
SAqJ/+W4DlEbJ8Z0PO/D5Xs1LStrresMKQEJG7DeNUt5YfhKBYRhHblFwlCTZ637+g1Q5m/j
fefNGV/hvSB7KPXlqnPUW/f1Wk4DcOHCYrrUm+/O2u1CG0AQx0mOYrHru7nwNhKNRnaCO0aq
s8L7Df0/+eKwScqTPL4oYaINBMOtNh6ZBtzwDwXt6ZjXsN6eUeNvyTmGtNGuLB2vVnjPcLWf
uIx0Q/8bAHzvmt4DUGZnspIZq21/7hPghfkslfIN5EAu0RWFmxs412+XyBKbG3SnCTQrdosL
v5QancUbpQdoH3C9wNUO969LtoFb0OJpsg9o4N+KIXxuPVpSjiFLeD9o95NUzKnwnsMUwTBv
QzrAXo0yOq+Ixdz3FfDC/ELC5Jh53FcnKL7kTlvC4yfZ57nyynRH/FC65WvcrGYG7fMSBpFa
4kC6WCzl1qAXqJ3YGb35WXduc2yQKMYPyhWyuK08kiEr2E5FxT+Dt0ndH672EiN9yWEOlX/E
88HVeIDYWcn9gR0SFcNeop6DFRWxq0ewr5dx3ucue7074gem64JzEYh+t0RJBoZ0oAVrCwXz
TiN9uRtDR/72VMQPGGbdY8ggNJmYxts1JBzINv20WKJf0ljJtpxE5Ckxb1x/yee5ngIOLoSQ
qpuo6HTkWdHpTdAniIXFHGUD0OpQvBOV9P/duiPXBB6aJI642k+i8kgGQ5aBTQ9uRZQW+bWE
FpBjJUrmMKtfsoDM2CB2SkcSRPsi7r+5NrT0hvih7tg20yhSB0qBwLQ/hoL3GTHXYJ7XHoT1
rWqNDRZzmxmyO2frJAr12axkzxM2Z1MDrLFwQX4o5vmpNbZTThdi86lG9o6iJQJMF6dH2KHx
6QKZ1cerx1ON+OV+DZYUCeytQmYwJE0yNFBh4NsSeoNs3iYLuNyvkzDeEnvCXWIZ1bWW1Tij
Gke0ocD+v0tO4ym7W6g4JH6Oejzcxj51vKPuIxt0iXVJLuFnQCLOD5mTS9XrBkPW5qwzCDhF
5e/WLant3SB9Z6nnEC5iyR21wWiS6vMkTMLbl33dmUdZ3RMNzZ0SgTo1f7XxTx06bXyb5Kx+
kKELkC2PTF5YcqdQmNtpB4YsA+EId0h4UsF0PvcVsRjwJIGCws4Q08mxmG2kr2YAqb6Y95HU
hNNpchv21h3xw8RyRQtRq8YCzw2G/gM0xRYKEQcEzSM7z2oyGrIKlK84UMqPE/ykEb/E4Qo4
13F/fs26pKboZF9DNi/L84V0R/yG8EIBHN2DWD8LHs0O9hIr/5HntefKBrg6XAAKpL9v3WPI
ONrV/ZckzEw3JAdYm95TjzeJJV7WErrk1nuS8+zp3gTjguVusPFPHRPVfYsDyy+cQuVqMIL4
IaxihdgJCIbsQxdwXiTRmbA2Z5MBrE8bK4yHof+hj8fbmPd53hviB5a7zcY/dWz2tDwj4/mE
i8VBgLAuD9BmXWPI+J6BTU9b/N5WiqiRv+Swh0dGLL6vdmhThPtQCb2hhY3x0xc2gpuUIV1o
kzOssP+wLsk9AYSVb5QnYGzzNGQRcfNyaDevG2ozDu+qx5bklxwmcc4Xlvj5Fr5GG/PUMdHT
QkzLyz+aY+6b5cSQFwX0yxIe52nzNTnACDPZuiFxIERnl0RHthWS+A31SEaHjXvq0Gclj2Fb
bd2SW2CNuezIQYr42SZqyDLgbXAJSU2mrKRC/Jq9/dlQW+XcxWUjvCrXBpfuiN9IG+9MEgWH
duuO3APKFI5aGkZN0gS4Iet7BsgdapkdwecWKcJn5C89YmKoHbS3s7UIi9iQL2gy3iJWziXv
gOYIK+44T3O3DdSQRbg5qbNI34x53VB7aCVxo3VHYkCi646BQvwsnixbQHYREgI+LjkvJmnE
7/8JcFhwLZzCkPU9A+RuRJXXDLWHdvViL9hkXVJT6Nj6V2UAlXOBVmcFItOH0+wQb4DYvqXW
JYUBXL7u7GXbQA1ZxnKJXL1iczYVOOJnISLJYrrk/Ezk7ojfRtPoMget2cFCtMW6JNdAPaix
vL+nhOf2LrRuMWQcOs5psu0PhoLCzWlNrP8lBU/uEG9x19k8SB3j1X24Ba2odr4Bd/003h/G
+wttEzVkFCUqKydUIIGGZLCnlMd3W3JH7eZ7IdlsNWhSAetSp82D1DFG3Yer5aagfUcs/jKv
mqRQm2zm7V+LLHAMhYFO7thYYV4bkhkDeH3+bt2R2L47Ugp+Vu9QG+/MAtY+pJh/PWhzgrbS
uiSXmmRjlQ3VYMgiEOv9ukT1J2cG7QEpP07SUFvskOiM78FB28u6pKZYp+6PKILVoRpg8YOV
r87brAzp4d6g/Z73r5AwJsxOVMnn2itRYDdXed1gyDqmkIAY8UsWTYoEWqx3baEzqDHfcWzb
yrzK6e6I32hF+nChiD+y0iHpQvc/snoniJ3Xm0eU1BiiErw7q7fdlCxDzgDiYWWI0oXFWdYO
7nhC52UbRkVnZV7ldDXihwBe+LXvD9qhJH23BO00mweZwBDeWgZovvG+hMdfjaIGf0DQFlu3
GDIOHZKAkKD9JccWkBwCJOQpCV3unwraeUG71bqlJkD8/J28/x9BezJor+X5guq70eJu5qYE
q9IxYgGkWdE+DpLQzYsxeTRoV4vVWMwrUBPqQN6Hdf24oP3GNk9DxmXQJI8E2hnTyWKrhEl9
cD2iHJSd4FQ7uL11joSJTL/M+35bjfiVSPqA1WyG9HF90L7J+y7LusG6JZdrD2sMlhIcATSC
xO9zQft00OZbFxkyOm8Ry/fdoF0q4YkGcH89781rQ22h+9j25mRktQvD2UdynkxpZ/XmD1qz
e0tCq6wFVed3/S1kOyxoV4ll9Rrygblss/l4nXVJpkiKoX9xPhUdlFCDp+3CPO+73RG/Fmpz
44P2BQnNnPeI1YxLEzqIF3Fh+0lkmTXkT2NfwfW0jBspsNW6x5DheavJBSoMvME5bIaE5IAY
b1fR4digPSEWG1wr7CFhaJUrtD+Je29hiR/qM/2QVohGkg6r15QuLJajWNBKlK0rQx72DG1R
wtnSO2IUGkNtAXfjY9wPOqlALrb+rwm2erL5V1JwV+9QRTRWSZjZYtaIdOGn7bdblxRmQ0Uh
VkvSMWQdcHudHrRXJUxO2kQDgZX6SgdrJYqxNPQ/QKZxPu/xfJz7Y1J7Y5pHDMdTplGkDrP4
FYfoYS0hYx7JHJ+VMDvvPrGsXkO2MTxop7I5LDXilyig8A9S99+3LqkZEPJ2AO93kmgXmviN
VPeRrm8nRGQLWPhjrBtyq0UCh0hYHsDhxqC9IHYEnyG7mBW0L0sU8/SSRFnollyQnAFAJ4JZ
3H3tsKdEBpddUoBi5fU9mFwOOKYEAY2WSJAdgIyPs27I7drDBomM3jYK8Tqurw22gRoyDr35
fVuseHOasFM7klfYC038HDpJAu0g6OwJ3zXWDbkWIM6K7o5GXC5hILFlSBqyqqwIlRUHO2Yw
XeINGWIWv9qhSSLrKuJZVxdhIffkNWxKiN94w+ZA5shDm3VDIQSLU7Betu4wZFjeOPI3Jmb+
GpLDnkpZRP83GPlLBFDKdxSZ+GFxaxPyn8TcvFnAHuo+tA+z+OVfc0ewMFz2sJwsV+vPYMg6
oKzYyRHJQ5MPeOOmiiXXJAEkeuyVdy7UG3fSwbxoqzWWHbh4MEN+AS39bRI/lAl4Ra1LI3+G
rMK5d+usK1JTGPV9i/OrHRqlYImt3RE/7UYcK5bVmzW0GRHPPRqoUAGo44cs38ViMX6GbMIp
I9q9iyOszOqXLEap+5ut/xMD+npL0Ylfs/d4sI17psYL44Oje6zob761ydFqM50kVoHfkH05
1OTNYUP6Y2Iyo/ZoKgIP6o3FD0Hna23cM6FtO6CO1skSnfFqyCec22aQ2kRNkBuyrrC4ubvU
uiNx6BOb/iJdz1A29B800YNLvdDJHT0hHoZ0NW0sfnP15l+oDOd9FAd927rEkHHUeTLIEszS
hZ3mlI6iXljiNybm/Ub+0hW4vvu9xbol12hSY2pry5DH+XuQhIXIDengTeuCxAAvaO5DG3pj
8dtXwlIiZmFKDw0kCZ0kgdD0vhe0F8VK7eRdg4QwKURxUEPh0Ul5M4rz9mwjfonu2X4dxSHW
LYnL6wFD/FAnaJwRv1SB0h8PSHhW5olBOyNo6yQsA2LIJxopyBu5ma4WK8ZqyDbqvM3vAI+U
GGoH17+Hq+emW7fUFDqmD4R7z7zzoN4Qv3fEYjmyQPxm8z407JFBe14KEGw6gIFioM7VO0ws
S9uQfWCOjq5CSgy1h47rs9ObagvwnhW8j7J2oyTnnpnuiN+b3uSaKWEG6VZb6KkD5ACB1Y/b
OOQaqAnlXL3t3tq0cTVkVQHVc3WRzdnEsU7dn0QibuE+tQGse+dKmIiHmNbcJ+B1R/xwBMw8
Cc3Kx7OhpMt8Cd1RhuSBBT4+aJ8M2oESFk9dJ+YazCtaSf5GSbn7zDZQQ1YxVMotTs+ZwpI4
sC/D7TiDj0eR+Fn/14YjrS/iRVV6bSHbcUG7kZrd35TWZ0gWINs/CdpJ1DxgJbpTQnevJQXk
H1OCtk/QVlpXGDKMwVJe2+xYGgOMcCQHGGUuCdqRQfuQMsNIX//D1UecELQbgvZM0J7Mez/X
d3PBDiB/r4kldmSB+B3oadsPiRXWLgpA3t+1bjBkfM+4TMIKDy5E4ZtBWyJWSD6NsVhcYc82
9B/2Dtr9Eno8Ud3kacl5HHZvkjuM9KUPP7ZGSALtoPT8AuM3VK0xS+wwZBkgFxtJ9FBdALFP
I6Q85syQ3FgYao/xEp6hDrRJAbydvSF+LUb+MgEdB9ZJgdtp3ZJbIDbHZfWiZBLCKqwmmiHL
+8U9QfurhNamubY3pDIOsLhuNfKXmHI+iPfbi7Df1vdwgiGA9AoJz+u9WkKrhMUTJA+4enUZ
hfckjLu0ccgvVkmUQDWK68yInyGLcPFOO6XcxWikL/lxuD5oBwftjxJmmZrMqB1g0W4qogYX
BxCMq4J2poRniTbz4oeKuaOygneC9oZ1Q66BuL7TJLT04QSEJ9TaNEJvyCLpGE0lZQNvkeix
1OZrooAVylXauMBkRs1RqHCqasQPixmWvnF8DPPmdyVKa7YJlj4arQsKg+eV1m4C3JBVoHgz
Kgt8inuBOyv8M2LZ6EmiVe3La21PTgzvFqGf67uxRMCNOIWPEcz7oo27wdBvaw9aJNz3zoLe
wvsWs2nIKuDmRWzZKDbgJQmtf6a0JCM3XIKNwxbrlppCG1g2FmUSVYPL1EJCwX1ilcHTBkjC
nurxy2JFO/OKEone9RQmOH4PFnbE0M637jFkmPjdwbnqiB8SPDabHEpMbgjlhcNg65bEMGQg
ED892d6zMc+E0NXn8o60Lsn12oN1D2dAzlHPj7WuMWQcO6S8usBKj5QYais30M+TvfEwJIPm
gUT8cLH7i1ki0kaDp921m8DNPZF/SqJCuB1qQzXriSGr+MB7vMG6JHFol6NZ/GqLoer+sIFA
/My1my0tbyeFrJt8TUYScgs3Xjp+ZDWJoJF5Q5bxEe+xEY9k5Qbkfat6box1i6E/iZ9mukOs
u1LHPp7GgfpCVjw139hLouKgr9tYGnKAbd7jA6S8rp+h9uRvunpsp6bUFjqkqrXoxA+1mmaq
x1a7L92FDsC1i4BqZH0iIxTHx2y17sk1GiWqEXUgFawd3rgbDFmCvxccGrTZYp6HJOEMALuk
YMWFM4g2dftc0Ylfh4135rBDkT4HO6c339Aa5ARq8hZLa8j6vqFDFNaZLEq070GuXam1QWL1
XJNSdHbJALD4bebkOsLGPVPYpRb6RDYrnJpfjPIeN3sC3mDIIvGI2xh3Wvckhj2MbCcGHebW
VJRFXA06nmybjX/qwnYbSd40Pt9o2l7u8Ul1vyQW42fINkrevmHFxpPvf2Cr6n/zztUWLnkG
Hrf2gUD8WtXtchv/1Bc7kjtGq+dhLfpS0P4hFoOZVzKvsSlor4lZ+wzZnrOTpDyTd5N1TeJw
Fj94gFZbdySGHUVZyD2FBZCmC8R//RcFLo5IgtUP1r4TJDw704hfPrFM3cepLCjMahmShiwr
oNrqgfvPWNckCtRz/RTvD6IBwMhf7Uk2qpwcJwUwtPTG1dtu458q3g/a7RIGUr8p4ZFJIH5L
xeot5nkThcBGtlizdYkhJ9jh7SEHmQxKbL+G3BgikcV1l9jJHbUE+toZvSCjLw/a40UmfqgP
t68igJPMEpEqMNHmqscPWpcUQog74e1I4FLrGkPGod28UD5HWJckqiwiieZD7st4zmL8arvv
3ifhSSmw/KHiQu7rJlYjfo3KCgGLhJ3Vmz00iGXS5V2INymNsombqrntDVmHWZnSlft6Dzdv
XG0xn80p6/WS8zjsasQPrsU1YuVcsjROSN3HcUnI7j0naFdJeMTXbUYWcgsoWIMqCHWDIQ9o
sy5IFMjoRVwlan7itJ8PrUtqvv+WpDyjvZT3C6qEvSV07wKw/J1PImg149IBJtqRQXuEi/1w
CYN6Ye6fY+OSW+Ds5bVBGyd2ZJshH/CtfVZ7MnkCcrXYCT9J9jkUctTMfasI/V2N+A3mJjQv
aGODdkbQ3g3at2wupIZhJAjj+BixHT8y0pdrjJLoGD6MK8r1WKC8IetzVp/jfm7QHhPzOiSh
/Ls9e7v0riqHYfcxk3McR2oiwXJ2kYkfrBBnShhDNpSLvdXmQGoLHljDMXDZ1n8O2j2maRcC
cOMjrOIoKU/iMRiyBJSR+oW3d2De7mMKaOL7gcn82gOez+9JeDwecGjRiZ8+RWC7WSEygS0S
mfdhIXqcxNw0v3yuPayxDRxXd3Tb4Ub8DBkGlM+vB+3jQbuVz73OOWxIhvTB7TiVMgNenyVi
1tZaAZ5Pl3wHo8sTRdl8evq+SdykLAYp3Umo6zf93bok97hKIlcvrH4Hi1lwDdndL5BYsIzt
7yQe71IhtXmbDHCE2O+4J6PaxvFi1lZDPxI/mPVRqfowCSuFPyQW45cmkGmt6zdpLdCQP80d
eFrCrMgrJawT9S8bT0PG560rI7VsN4wIhr5jB/eAOj42a2vtAGtfo+r3QoS7VVusqFh9S9BO
5WOY+J+zeZA6GtX9VjWORhbyiYUSns+7go9ftDE1ZHzPcLVDL5Ew0xHuLyvunxx0Ae13gvaB
dUkiaGV/F5r4fSxox6jHf5SwiKEhOxhmXVAIbCbh+0CimE0jfYaswc3J40j6PidhKZfpbDZn
k8H7JCEIEbEairXFFtXX7UUh2d2Vc3HEwgWQGtLFUKXtNVMAL7Nuye3aq5PIenIV19vNEiZS
GfkzZBU4zvMs9fg9zmWbs4aiQSd3YN4jvnJ1kYnfDmoTTWS6ltSRjUmoT3kY4mnihnwBpA9x
tJdJWCcTxA/nY59p682QYcxjQxgQQoCuFKsukLTcMCQDyOThvI8wqwlFJ37I4F0u0ZFtdh5g
+vAr5luJnfyiRA0SpO9i9XyzlMdxGgxZ2zP0sYJvS+h6NCSHIRJ542Cc6bQuqRng5t1EuYz9
dklRFnEl2Fm92RonEIW9TKsunOY+0hMyVxuhN2RcYUGtyZP4eKIiglnzPBTR9YxrQs2+Dj42
g0xt0eQp4juKTvy0b1u8+4bkhS2whQu9kQt/eYEFXNHRQAF+i0SZ88AGG1NDxtGi7u8p4VGD
FpqQ3F7QosgI9uU665aaAf08ImYvLizxG+pdsGkW6QNkb5CagB8aQcgtOj2iB6zmmIoJc0OG
oTNJ4XJEndcsJpkVVS4eJOVnJZurt7aoU/tvIVCN+G2TMFtLlGZhSG+cfCG2i2S8ZOQvt5q7
E+IaW3lrAdyGrKLZU0aftS5JFC1iIT9pANa/hiLI5mqTR1/cHlJu3jekQxIa1Zgh1mCdCYDc
k3m9iY7mWjO3mSEvgMXakjuSh/P8mCeutoBi06bkdOGJ30eCNpb3t9pmlAmSsJda8LiP2LC5
Rv5yTeY18VvBdWYWXEMeABcjSl0g2WOhdUfqssTQ/4CxxXk7C+P1rO+G6XaoCzaLX/oY5y12
I+P5h46XajZBbsgBpkqUXIA5O9GIX6LQyiKIdyGsUBnjRU4GI8nVxfi9LgMgq7dRLe5GI36Z
0OhWqUmIGMwNRhRyL1yaK5BAgyGr2K7uw+r3tnWJoWD7rZPPmuhtlQGQ1Qs4i1+rLe5MkIRP
B20Bnzs+aKcEbaWYazDv6CShN+JnyAM2cW+AQQAxZm9Yl6SGf4lZ+2rFi2BJPUw9f4CExbN3
5H2/7WlsGEpMrLb5kKoGAqBu31MUuheKndNbBLwlkRX3TesOQw4UUBA+F2u8VkLvgyHZ/ndo
tW6pyX5bT5KHMIb7g3aohFVOXP3VQjDbOOD0AHdyh2UOZWPBL1bPzeoleTdkF2bxM+RJAR3N
+erqxzVY1yTa/0OVsjhMzONTK8C1eyP7toGt8DF+uMgmNblGiVn9skYEtXZiyKcQH6aE+H7W
LYYcyB0dl4pD6yd7SqmhtmPwVwnjvbEnrzPSl0if72SrL8oFVQLKubiTOzDB4FpcapMsM2Sv
J2NoyC5cJh5cNS5eaqsaZ9PiDVlUVpDkt4/3/BjrmkTHACT7i9yXl5isqKli7jBEkb9CE78P
gnYf70+RsLCsFZdNB9qt4iYhhO8GG4/cojNm0zwxaJMkTNgxQW7Ig1wSiSo+GAFJDivZDLVX
0BHndwYfI8Sq0DF+2JgeDNojQTtaQjevkYx04LSMaUH7eNCOCtoMantXirng86xR/lOigO12
KT+712DIGnDE4BHqMebtmRIWkt9q3WMoGFA94zcSWlfnebwpt0pOfQ9eB+lYaBpd6uOEfsdJ
Hbeo50+S0BprxC+/QLkAF0vbKnZyhyHb2BK0yyQ81WkiSR+IIIrLW5WBZPaB0RKd8f03MYNM
LbE/SZ9QMd9eBPlc3wOLRKXYMkNycP2+SD2HuLCvec8Z8ifEgV0SWk5A4o+UMIbHqvEbsjhn
fXIHjxC8EGusexLbBy6hAQB7wG+D9u8mK2oGXapoa5EWcnfYg9oF4jgWmnaRKklo9J5fWxQN
ZIAKcWiTV6lxRYbvFRImUZkgN2SVeGiZtIyt3uRQYnBZ1ZAb60xWJIaXY9ZB4YgfLA5wLZ4b
tGMkLNj5abG0/bQFrqv5hlgwc/HmF1hfCBiGmxensSDJAxa/4RIFzRsMWVVCXYbvOMqi9WIV
BtLAeuuCxDC6SIu4ErARfY+bERb2OUF7xcY+VcC079yCzyjiZ1p2/gACf0/QVgTtRT6HpJ1/
SlQvysbVkDVl5fsSWqZhaTotaAcG7dcSuh8NhqJhaFG1t96QDjMpp6tlt0jkFsQRMijrst26
J5eAVQ8xI3PVc3N3Y10aDEkSP1QSuDRoF6vnR5qikhpGWxfUFJvU/cLstdU2mCaJsg1RyHms
zYHU4AQqjvRyrt4msaOS8oydEh0DJCTxcJutkPKajQZDVrCdygnqTR6vDAJ3G+lLFMOsCxJD
YxEvqr6bC3ZkD2nM79kcSB0j1P1fiSXaFIH8zZTQgoKAbdRpvCNot1rXGHKklFrtyXTJuKF2
GHCu3g6SPdSw2WaLOzPahwv8H2LdUQjAfe+sJ53e2jQriiFr+wXmZKt1RWawybrA0J/ED4U6
3yHx62AzpCtwh0rk6n3HuqUQ0OsKMX/P8L6RPkPW4OakdjUi2azduiZVY4ChdtAGlm0DgfjZ
pMoeRoqV+iga1ioy/6GEmfNm7TPkBR+yGZLDugqKo6H/4VzpkNGFCa2qRvwGS5TcYciGpt2m
njtdwrOUDfnGFu+xK+Vi5M+QB7wuFmeWNJrV/TbrjprCWfnqvH4vLPHzYda/7GgfhuKgQyIr
LtZYi0Tn9RoMWcQe6v7zYmW+ksbB6v7hUl4SytC/mMhbWPwKk+BabXNBbN8E3kcMhyV3ZEf7
AN607igEdHzUEkXuzdpnyAOQlf5LU0pTA+It7VxvQ78RP7h5B6n7e4kdD5M2rHxLMQGrH6x9
Zj0x5AmwghwRtH2CttK6IxXYWb21hXOlwyszYiAQPwDWCH0gtCF7E9JQHFiJHkOegM3wD0F7
17oiNTRbFySm5KwdCMQPQee71GPLHkofLdYFhUOTUqrMXWbIOuBWHK4ez7V5m7hyqMneEuuS
mvKi/dR9FNiHV6ZUpAv0oYkeFjpi/sycny70mBzsjaPFhBkMhloDwe5j1GMc3zZPzN2YFHZI
ubfHPD/9jxL3VFQ2QW3VZSR9p0hB4lmrET+cG+qyt5q54BfanEhtnDAZ3wraAgpenPZwTdBm
GenLNWBZX8P1dgzH02DIKuDWdSd3wP01I2jXi8UfJ0lKKhkDDP3bzyB4V0sYw7q/hDVWC2Hd
7s7iB1cv3FDI6F1qcyF1LA7aySTkk8UKpxYBgyVy9Vq8jiHrwManA97/V0KriCG5PftfVPyh
MK62Lqn5fF8pBfN2ViN+q0n4xnFzGmVzIDOaCLTr5RLG27hxNKtfPoFyDHsZ8TPkELD4LTTZ
k7j8h4UV5bxwTu/71iWG/iR+U4I2Vm1ONwXtNbGSLmkCdRU/LWF20fkk5V8Vi73M69orkfQ5
i5/F6xjyhs8G7QWTQYkCir+FhCSDmVTIIZuflgHg6l3FyYUkgqkkggcZ8UtNywMuC9o3Jar7
hng/OyA932OK8XNn9bZ5pNBgyBr8kkOnBu0hI36GguJcznHIZhhdFhed+MHV+y2+5zAJy068
YfMgtXECEdiHj0H67pcoqNqIQn7xjoQW3HHULF0VfhtTQxaBI8IO4X131KBZqg1F3Xdd+A34
z7AiXVh3ZEMUy7XzQ9OBGwfE05xBgdsqlklXBDLviLxwQ0X2/EojfYaMAsr/lUEbH7SzKYde
s25JFMdJmOS3ImiPiJXSqbV8LuTFVbrgEq0PnTEExJDOJNSVw0+QyDpk45JPYPwOogAfTI1y
nJjbzJBdINTnQd53cWZWwDk5oKzIzyUMvUJWLwoKW2Zv7bCJt4U+ss09RhLBeRIW5kTxQgQ4
wpy/wLSLVOCI3QiJ3Cs4xQPxNmb1y++YYvxgLUEcyfigfUGiulzm6jVkHUb40kETb9vVfUNt
9lx9HOF7RSV+eqM5TUJzMi72pKD9OWiLjPilNk4lKY+lWW9jUYiNc7saTwupMGQdzssAxfMT
EiYBrpXotANTVmqLLVT2xynyZ6g9OotGKOIA0/G3g/Z/1XMo7TLUtLxUtY9x6rnlNhaFIfQG
Q14A0ofjq24J2udIPG4WKy+SJLTFb4d1R02xUd1vLTrx85luHbW6bTYPUoXu/32V9m3IJwaT
vLcoUr+Ca84IoSGLQHjCXRKeHIF5iqxHhALdbV2TCMZLdJgC9uQPrEtqPt+BXUUi2dWI31jv
8atiFqYsocW6IPdo4KZ5Y9BG8zmU6HlQzBpoyCbg9RmjNkPgPpuriaHJ26MxFpbcUTt+tB/v
D5ICnV5Wjfi5pAFY+5A99KjNg1THCYL1UPXcX8SsfXnHKJK+aeo5V9rFNlJDVtGuNsMlQXvK
uiQxuKNUUQEAiWB2Xntt99w3FA8aO5CIH/BS0N6yuZA61qn7w6w7cr/2ULYFsbT/rRSsZ61r
DDkB5ux9YpUF0sJy6/uawVe8O9nfhSd+W6hZwCoxPGh72CRLfRKOUc+1WrcUAijngsz5wVSw
Vou5eQ3ZBeapdjfiOE+LNU4OO2gAQB0/xHm32L5cU7iTO3aRDxWe+HVIVFMMgbyIRZpt8yC1
cSp5ZM+OSSoGmcdGupeEbrPhYke2GbKNYVLubcD9TuuWxABDzETex0k/44z4JcaPJkhB4inr
u5lgLtMQTHepzYPUocneGOuOQgDWE31k20ckrOlnMGQRrWyjYpQYQzJoVPuyeX5qr5wLFfPG
ojLauMkFoMTEMpsHqUNnVa+z7sj92oNg0QVYP1SkzzZTQ1YVFe3qPUDM3ZgkBnt7wPvWJYlh
1UAgfh3qPvzcFseRLeBUlXtM4BoMhgSxp2cUGC8FsoTkALqWnJVYSw6FKpbdU4sfaowhrsAO
j08Xkz1N+6CgLRSLB8u7IHdJVObiNWQdH3pGAZRzsSLChqJimOJKhZHR1YjfCI/t2pmA6QGk
DhXEUcfvJRJx1BRqUa8b8jemDm4jtYQdQ9bhW/ywL1hyR3IYHENKDMngoxKGvOXe0FKN+Nkm
lC3AzX5t0F6QMMsaxG+hGkcjf/lHs3WBIeNo8sjHJImOHjTUHtrdaIkdtQUMKwfwPpI7xnnc
Kbd7bn0PN6FFYsfCpD1OOxXRe1ZNOiN9xcEa6wJDxqFjnWDp67AuSRzW58nsuVBmbgvaTUE7
ImhfDtqsIuy31YjfeHUfhSItuSP9sXITrlTlNUO+AGuJc51ZySRD1qEtTu7kDrP2JQd3oAIw
I2hzxGLvawG3n86X0LsGpXxukchEJejFjMQOOww6/Yk4gQt/Ehf/fFv0uUeTRDXRRlp3GHKg
qGhX73vWJYkBsd3nB22ThB45nN5xQdC+ZV1TU8yW8sMrCh3jt03dR0KB1QtKl/RhrO4P2tES
WojaqIWsFLP45RkYS7jMYD052LrDkCO4Ys6GZIDs6atIvLEXIAZthXVLTfkRjqr9BOf50qLs
s/U9fN+7EloAjWCkizaJ3II3B+1JRQwN+QTidbZKmKHXXCSt0lBI6OLNg6w7EgVCrVw5kXN5
awaZ2uJOCV3qkNOXSehlK3SMn4bFEqQPTLaNMc8Z8rv23MkdOxSxt7E1ZB2O8EFRQdbjYuuS
xGE1P5PZc5HfMErN98JsPpWAsiEwJyPu6BixWIKsYYh1Qe6FioOLmUIc7ZG2kRoyjEZv37g0
aL8TS/AwFBNOGUc4TmFOyapG/GDdu0TCbN6pYinkWQJOenjGuiH32F/C2lDO4odg7euD9kUx
i58hm8B5pX+WMMFsLG/3NuKXGBqoIMIYc1TQfirmiUsCu6RAh1j0xNWLuIJlNu6ZwB683UvK
Y20M+QRIH9wHP5LwOL7pQfsfI32GDO8Xa4N2BgnIyZy/66xrEsMFQbuVe0Aj+/5W65aawbl3
UdHknYFE/ABkD222OZDqOGkyYEfoFQPzvTEGsbckKkOWUVIGgbnWHYkDx3Yi5swdk2eW1t4D
YVI7eiBjfX5UGK9nNeIHje6QoF3IyYbjwhbanElV2DqYta84a08X5d6s1p4VTDdkVQ5h7sK9
u96UlMThl8/ZZF3Sb5wnDs7iN5aEe3PRO+HyoP1AQnMy6sVtsDmTOhzhw5hYNl3+N1GQOxRk
RQDxK3z+QzHruiH7c3d9BaXUUFsM8x6PNyWx13O3N1bStoHGfodIVDPuj2KFgtMep5KUp5NP
tG7JPbDGTg/aqRIGzTdxrVn2vCGrcAlJzbzFvjDfuiU1XBm0eWJx+LWC23MR21oY41c14uc0
OsQSbDTtLnUtxcdz1i25Byx7twTtJAkzeuPIvsGQNeI3R22K2Aw/KXacZxroZP+bN652cMYv
uHn3lAHg6h3NWxwlZXEE2YMdlVQMrCHBg4DpMEJvyDhapNzz8JRYVm+S+/Ueal+G7PiKWDHn
WqLJuy3MRKqEZqVVtNn4Gww11SgNhjygw1M+fy8WX5YU6jwCgsoOZu2rDS8qsb8dSkW7wEpo
U5Ot2esQQzpoi9FEDMVZhzgKa4R1hyEnMuh5CU94MiQDEOyNHvHbYd3S7yj1kisViviNUfeH
F5H15lADabauKCQGxWysttYMWUSzd/8jYq7GtPCy9X3NUUgDS72Na67wr6Adz/vTxOoqFgV1
SoO3Ui6GvADxfnsZ+UgUrRXuG/of7nzecVTEhw0k4oeLX2NzIFVg0h3J+xgLWGBPCdos65pc
r71SzHMW82fIMizcJD2gXt9k9Xgf65Kac6MO9XhDFdldGOK3h419psbpnaBdz3aQWFBvEcg8
MNh73tz5hrzgraC9a92QKPHT8uHAoE0QK6VTK/mM/nZltqCQXyLhoRalvJO/SsQPhWUn2dhn
Ch9IlD1nLt5ikHnnPoBVvY5k/kXrGkOGoYkHEg3srNj00CRmda2lfIZc/nPQPk/id5qEXrbt
UmCLn8Muicz7ltWbHjqt/wunUQrJ3nsSFghFjJ+df2rIMnQoAs5wHy0W45cW0O9brBtqxosg
g28I2lYJE2leKIqiU4n4wbLUEaPl2WaUHklwZADW2AY+b4kAxUAriV+TbaSGjGOouo+5Ot7m
a2LwXb3jKTes/2uz3wJwo18tBbNsVyJ+nbRCAIPE6vhlAYgFOzlo50pY6w1JHmdbtxQCzl3T
qAS5rTVDltHJuTrGuiIxQD4M8/r/42Ln9NaSaE8M2tFBe1YKFEvZk5M76kg2HhMrFpkmYIW9
UcIyLiIFSi0foIgjdq0k9Eb6DFkH9oVVQVtpXZGo8v+ToH1WwvO9QQTtVK3aAPL3uKD9XMJ8
Bxyl+RkpyCk11YjfJolKh1hR2WxoH01K2/uJdUnuBQuAkIp23h/FZi58Qx7Qbl2QKNYGbbaE
sWb3BW2sWDJYLfGGhAYWKDnHBm2qFMS6Wl9lU7ooaHtLmM78moQ+brNEZANbxY5KKsramyFR
Bj1KKO0vZkUxZBdD1P39qajYfE1WWYTrEbGWs8QOYagloJS7+GvsuYOLtvnEYTvb6piJZ0ge
O8QqtRdNiOPkA4RRPErt8jQ+ZzDkActoFDAkByTUwNV7jIRF/L8btMXWLTXBnlIeUlWY2rnV
iB9cizv5HlgizP2UHXwo5mYpwtqDFnlx0N6nkgU3zgfWNYYMQ2eVtklBYp5yJDOuCtqpfIzE
A0uuqR12VLhfaOJ3Axf5MBK/i8SKdaYJWIhcpjWCeq1wZzGgLerrvXVpFnZDlgHicYCYxSkp
IPRqhnr8UtCetG6pGTokKmu3ngp6oYkfnkepEHdcyQLT7FIfJ5CAjWpCmsWvGGQeY4sYP7ht
ED91j5h13ZBd6CxSHF5/YdCWmpKSCLZJeEye25eReGneuNqhUaKC5U1F4kCViF+dx3pvN+KX
OkEARqrnzOJXjDFFZt5jSpjDqj7LuseQcSDeGN6g6RIGvZs3qPZA+NUI9XiRkb6aYrBECR3Y
bz8iBSmWXc3Vq4lFu3q/aXbpwcXXIMtoT+uOQkDHa8Ka8lfrEkOG8QxvVwTtRLGEszSJ9xLr
hsQAgl2Y+OtqxM9tRji5Y0xG/3fJe67IpHSIIn4bpEAZRgMc2pKOmB2LlzJkGYvVHJ0n5glK
EvrkDiiMf8swrygVYE/eIVFSR0eRJlJPagDtkuzVaSr18Lmiol3sFJWiAO6bFu9xp5hl3ZAf
pcU8QclgsJSXF4HXJ4uu3pK6hcFin6C9K/kLB9B1/IRyufDET7t6t2SMXLn//WkJYx7gfij6
QdVYNC6w2twrxYJ22xvpM+QNNl+TJX9OZoCQZPX8WKcMfC1o/ylhrdLzJH8W4iav7wsRy1qN
+DWqRd2Rkf9ax4mD/zQzaP/F/3lB0B4cQIt/fND2GgBkd6ChRcoTq7IkwA0GzAWUb8EZppN5
/9tBW2hdkxgG8RahPu9kTD7o+7g9MmjXUqadEbS7Jb+hLOAZDUVayN1pFlnTKlsoeH7EwcBB
4X8fYIvfkjuKBQhxuHBQlR+ukc0ZXHdGAA3AZRIWHXeYZsQvMTR597Og/OtYPicfcJTfBRKe
SuTcpHksP6b3WcjkrQOB+O3owXuSBNj28UG7hrcAguGvloIcnNwDNJvsKxxgwW5VytaojBE/
WNZRr+2XYiU7BjpguXElpeAFukPCupOG5KFrzGVBOYTSOl7CTO8rqcjCKPMjKrOQHXmx9jki
u0UKGkvfE1LXLun65Z2F71IJD6fGZIeF5HoZGLF9DkdyYTlcKJYBWgTgsPVpnkDXwicNgeeA
//UHCctG/NKGyiCR5abEeWFZvens2R1KYUzTGt/CvfgE3h+nXvuJhMdQJiGz4vpgd/vFfWY/
Ca2qwCYpkMejEvFr4IYkJFk7Exo8DWcuxoQ6UKLYp1ZqEQ8OsMV+IRc7tCgU+53BhbZVzAWX
Z7hTWBqpXa5IUZCXvPV3C9fdezZMBg/wPhwetPnWFYlikCLgH8as26TIHggezgw+zVNcAXjg
EPu5IEGZ1V+kT3+2nbeNvF5nuSws8QPR28bFDaLVmdDg4f8cE7STg3am0h462TAQiC+ZKwPr
PFO4AH8ftJv5+BIJK+ZnzS1o6D12kswfwccuxi8N8jeEmzmOa0Qw9jC1yVj5IIOPMdYFiaNd
opCfJF29cOUeFbSp3HuOpVLozrN1hBRHyv2bhCXg6mv8f8ZLGOuIzOb3PVLmrIB7k8v0hrA5
ufuOhOXshHKxMOdSV7P4ueSOKey89f34m6WYDQeT6fygnSTltYpETbCrSfoGCuFzwKTVAdS3
UuvaLhZ0XwTo80+31mB+d6ckTZAwaH8617tbf84aaWexGhzsqMhs9H+tkjsalPLpyB7i9g6l
nNB7c4e3R7dyj16ZwB59IvdBJF/AK7kuaJ/3CN6XSVThcr6GhPk7VLa72zfxOk7q+CkVnPOK
pOhUI36vBG2ihHF022pA+kBcDpLQegVrx6gKGkwnJ9WTUvt4gTzBLH3FQIMSKB01FJb+KTc4
I/gQCtAZEmXfOcBN88egPUtt2hQMg0h5duZIzl+L80sOzggCb9gZJD/9CciETwbtFJImIbm8
j3zgGv4H7MuD1H8SkqSkXP9HSeQRHEaFdR9FOiewb0ZRvk1R772Esqy7udvJ78D77g3aP4pM
/OppdTiTndafp3agsxEP8CVlXXg+aK9zEDs88udIH7J3b1Ab5UATNK5+kNNUJkmYcWR1/Ipn
RanF/HaEDWvvMAmTpY6Q8kDsTk+IQ9DPtaExKGBevquUlFelQKcZ5IR0r1Hr9uAayQuEW7VQ
BjzKPflUcgJdZ3QXX8Nc+Jkkl+GNa36RisfnFBHVfAUEb0+S0ynqs/sqnrOzF/N+uRQ8ucNd
HDoRWbQwo25XC7wvFw8W/mtuQCBzn2GHXsOJNShmE8KkQqDoajUIAw3oj89zMR5KKw2EwDck
dAGbNSa/cBX4RaIioTv7sJ71PHBB2Ph+xOToulpSZdO+3+aVoQJ03Ocimx+JYm3Qbg/aDzkO
zTUgfvD0wZLo3L2w/P1AyhM4OpS8gnsX5VuSTLbs5O89HLTHyB0QW7hEvQf/60P20xr222dJ
ZnvCY9zrUJJPJsmGonOnFMDbVs3Vi8GEX/uqoH1F+ieo8UMO1p+oHXxCQlfS4UqDKNECUqcG
bKAXCEWfrGOfjeLCe0HyWRTT0HVNQFuGm2Kr9D1u01mEobRdSG0XStNfgva/QTtLvbfOE6Yu
TucOsVACQ/y+MDJDe1dhjtDqxT6AcKe3JfSYrajB9WsSid/6qpITq0h8kOX/G+5F35fkK2zo
TN67SfxGSfnJGjdI5EW8ndcyp5ckeRqJpVN22qQghqdKxO8jQTuHjB4k7M0KFoXeAhvbLGoT
N0kULwAsIxv/LAdyFf/DMrM8/P/QWZVw817MDb1eDHkG1sS3Kgi23RGIKMOygALvAa6pv1Mw
XlPls7s4n37vzSuz6BgcILebK+wjSc+TugE8Dm9I6IlbWYPvhpcAMXFXSLmVDzLluxIagK6h
PJnH/TxNWfGahN5DhK7AkDSf//s8vq5zA3oblvDxoO2hHt8tBUmorK+wgAer19qVVlHazd/Q
DB0nAaAY8yFq8cK1hFIlCNg8nGTvqxKdyGGbT2iJcSb2EUoLsb7JvxYPYQvr3GHUVFf3YT1D
KbhcwhiY9SSCULLO8DZLV4LBPYeNxLfs29wyaGhrxyDO2zT/y0AM+8F6hkUeVv1fkYz01zoF
YbqFhhcH53X7HXkAXL+3Un7ckAE5Ac/EXBI/8IpFvAZ3nOsP+yDP2iSKY1xGwl0IuVhfwdKg
U7bbpW8BvO47kRqObJpvUmvsoMbwuISmYkxouDJROPp0GTjHsPUUcNkNV9aZDuuSwuB6rguh
drq6D2ttPQXhEGrm3/HWM7TjpyUM5XDCEUDJg6VG+gxVAK/DJt5vTpn4DURgD/0viSxxx0j/
JFTgVKjvSWiM0bJiAeWS24sR7/Ybjj2MNSsz0i/zqeyiFJwLHQNnuXM3eUS9Ushd3sFfpPtk
ygb+buZlZyU34WB1wf2BmZxYU5S14WcS1dTZnxMapO8bYkeRxaFDomKSG8Ti+4oCELSDeR9C
aon03XWCjeHXUu6qgcX4UVoLLqOAn0cCuINCrV4srMJQGYOV8umIgLMEGWoPuFcnKVlxqfTN
KIO1/nmJYscd1vA5fT43SCdOzELtwK+RAGYFIKAIa4FnwxXCx1GTD3pErjcKtOyGcSUXpC+O
+OkOcibOvgR5Y+O5jpPLlWmBhQGxAk+q3zqa710gA+sott4AZmaXpbRZ7CSFIsHFTW2W3sWQ
+O9zxxzqulVuk/g2NeObqcVDuN8i5dZFI3yG7tCmNsU3rDsSxV5SHmO5rRdrNk5W3OTtzRjT
30pYs863lM1Qe3QW6+n+lkrsMM7R2X2Qa6PZ128pHtQbwpg74ucAUtEuvT8Sxk2uBpK5Hymr
g5tUP5WuJuKlJIQP2dquqm07rJX+K6ptSB+NvRQgbp2597mTNy6W8lM3llETfkpCi95/kvTB
YnytWOKUoXfQMXWIJX1UzNqXlpxA0uXQXvS/W+PYmxHD9z1POUQICBLBHqvynasku2cza0PI
Ls5P2U359gEb6g0PKuJEqkT8OnaTybqsQlcKxnXaBloaKmkKqOWHmn7v29ru0cQeIeWp64Z8
Y3et6g0UTtd7QnwN15u2niMo++sSunxxlNFCtf6N/Bl6AoQljLVuSA3Nffw8XPPI1j1JkUjI
Axhj7lFyyJcHeDyH+3dDRuXFURIVwt+D17q7eQI7FdEuZPZ4peSOPVUntvVCKMD3jyBLfSIA
Or+7uD387mpb11WhLX6jOUZWa61/1kDaQqy3QfIlzgEkZOhsXRc7CyHtW9WhkMFKjNpfhclO
MySKRjVXB1MGGdIB3JDv91CmHakIn/YIwAP3QMzeXKryOIuZ1JCF1ygyC3mIxJdZffxeeNZc
fdO2Ik2eSjF++gipjT34nrjq3qtI+BCsXojaNylDZ/Ua+hfQYlG7cjwfu0O/taCrpwAYQgGD
YOiPSlg25f0+zO0GrrcNPRQucOvCmn62lFv5NlDpmlvhNxCo/Ts+trN3DX3FDs45Qzpor7B+
9boGSYc3AJZ+bS2EMeZ2Kc6RjDhkAkkdd5HYXkziB6tfXw5/cEmUzVKwkIZKFr8tvI8NbmQ3
lgpsNldK1zTwWarTrchw39Es5bUVLbmjf1CiRvwbEqlOatM4P/oNKjR4z94S1q/CWY8Tae3A
nIeVuz+Cndd3o2SBcKKg+Y1SblGHgoUYvieU5l4fo6V3esLL1qSht4CVaDPn32AqP+apSXYP
cNhaRZ5BVnxRwqxfl+WK9f+chDF6C6U45dKOJLFdRdkINy+ONZ1G5bgvxG9wUeVkpYv6uHrt
cFoZVsd0+I/VxAJcgOgjUm4SNstC38bIHdm2hcIWxGRbBS3P0HsMY78u41yfwnaLeg+yvGZI
VPbAlVEY2k+/P0XKXfd6TF3R1lM9bRTJUHMkcuvWd0Nw48rEVHqulPD8NmQfO2PmrSGdNdJa
4TUQHli+jveUQ1TSmCflHozuZEMW5EO1/gDB/R4J8Z18bjM5CDwcJ7I/dpfkas/nyCLJLD+4
ezStGu64NuFGh2KN7oiwShmEP5OCHGCcMeii2o5kbPSsN7Zx9g1/o4a8hLe/4f1ZUm4Fd0lP
qBEFKx8s3v/sx830EKVkOcEGi+K1Ul5ny1nU53vrtycHj/uCXH/GHfhebSPoT8HdouaxEcBs
A/MShfUfpow/lu1vfGxH/NUeUz3S7bt1Z3AP1sop6nki0Wt9hX2luz2kVMFQlIX1+jUSXMjj
R9TzUIZxEhKMUl/aDeLnrm2a4kFtRdpv670N4T5aFfyikOhcxAchJsBP3oCV77aYTcjQf4B1
9QcSnXhyokRZ0uute/qEBm5cziWATNhzJSxHdA77GHP6Ks57CJmLpKvbtLSbv/1FRejhpkCG
nStrdK6UW/naOO6zYgQxSOIBSktdzc1hgzdHnILn3Hbuc18I2j5cx095m3mtlBn05xr+lsmM
bJO+x3h7HUkG4l1RGuhg7htPWjfVFDj16uvqsTuL9gkS8BOCdqBEiV6QFXfRkOMDa/5ktQaH
xOwlGONPcM/ZTAIEGfGipF9r18mwiyjffijllsydlJGPkgx/R3qXlOJkkbbyHSzxns9cEz/g
Cm+T0dksTWTP2q3rrHw/idlYqm2Ephn2bnyuUBYfVxkci/UWLt6vix1v1xfsjCFwD1HZuZUk
6KCg/QdJylXSNdB3d0nf96U88LqOaxDZd/ocXcC38vm/i7lwPz+3iwKqhUJbn3s9hGsWc+g9
/vZUZSU4i3Pr1gT6/h9isapZRwuVEVg/Wjn/J6h94XjOoSdNptcMV1Dxb1RGGdy/mGu7ztu3
HyWRqxTfhgzYGySyZuEzi7x9/DjKEyijW3mL3zlUqtf6qzVcrDMselMo15Z78rtBIuvoJMpZ
VDNAcuQ93ZBA/R2T1fOf43f9XspL3+SWWLgLPUU9ryfSLin3dbtN6HYpT94o9WAjbFATNzfn
2qWIz3PBbyHpGCflAb67a8o2VNb0MJcf4Xo4iwToRArJOJdJb8meI5unSnQ+rw/tXsDZqH+U
ymEUbu29QoF/IueJy7Bvl/K6nA1KkfPhlL3pCSlnVvw3+xglkReoScozyR1gfRkrlujR33uz
25dvlfJSJeLt1W7dukoaz0v1jF/E+r0jUfLHf0sY2qLxNImlO86tlURwY4oGnOO4Hx6hjE+Y
e4dJmNjm+uZyieKz65Scxfsf72aeuj3g+1TAdT+7uO8xVNi7M3JlenJVg1vserLhwu/ohjWP
Vpul23SmcnLN5e+6yTqTWuVavm9/3sKysXIAL/wG9g36cC9vY+5UYzKd/W0u3/5bD5jbD1LL
u5jPzZPyOJLdwU6OFRJzDlfCqNIJOdBkT1djGyds3X0Is0s4Z+ZIdJD69R5h3Ext+Y8SBYBv
oGCfotaeweCIn9v4nMXJP8YKGe6FcYNlSA7h9iau5c4KxE8U6ftiD/bMehoKlnFPPkK6xow7
pWyl2neu/P/auxZgq8qy/c6Z40HmoClTCcPYiSIhGH/FW/yZNEmhZpD3a16wwEuZmmCpqViZ
lhGRU5pdBC28YRZUEOpxftAgUNEcEMkEZBzwEqLC4ME9zL+eWc8369uLtS/nnLU3e639PDPf
7H322Wefvb71fe/7vNfPdn+I9wXP8TSfhK8vSax5czSU74HRDG/lfjRecD1vV+lwmVKCDxl1
QiOEvHttVZjnSYIi2iPmfXBEY4Ulh4DijPeKEhN3Yez9A2l1jPH+r1vYXyPDb1ZCA5e269u3
R8Lic48jKZxF/HoPfx0/xjGexGiGpdO8dKMVhxHKHQn0uu2aRlFpP3fSiBpG4ZTkJXzH2+/u
lI9F/Jv9SRwFwSxq2OzrhT4xIrIP5VCnpis1OdTq6Ugj2d7DivPvfRL4mypIX1x+PE49/TGL
0kJ8HE7dsjQFozcNQBZ+i0RvI51E2z0Z6a4PjqlXrTjv7wuU45VCtG3kJBZzsMRxEYlfJiOW
fqj3LisO/7QkPP9hlZ+LRbKNk4OFg4T4q3kzfC8jzsNDArsrKuni4h1pySGFZsKOEvfCJ4DO
8t5XsjJ1tFlxWP2tlD+/vQbfuYWC7Tnun4+WeB+E4IF8fpdnucpjI8ThVzP6nr7t3jruogEh
pG+EgnR1eKR7O3WobzDCW/+PHvyPxfzbEfwfm2Pyz6V/XWuNc2KHf8pIKaK7NmEuuxPFGFJC
7/o/94nxqEwRQN+lDCsfiZsTbdeqXiN5W1Dl5yJEtYJCARbFcu9mtMbIzRueEgRTR1LqdP7c
zGf3wtX+jBX3Y4ovwj6cZyns9HGhN/cwXtLMpdzh3dt42MzHi90ULG7fwvNyOg2vB2MCEp91
orfn1E5FKIdnLcov9r0gfgrQExal8GgNpaOX3TzO4V52c/2uJ5Mc/k4d2935f4+644CE3yGP
7Rje+2UNJCNq/R12ekZNd0l65haYK4FGyOcoK/a2+b2AupuMvZKPcBn3498XYgRwNBUgchRw
diDctl+xsGt2swuR2y0sRx9WgoxDGMwQ8Ut9P6B9zndJ9J6iMXQa70dac/2aJzRcioMfPoOn
5d4eCqDlnnLAWb5+esaBXFPG65udVeEl1AUbafS4Zv0t3hp1JPBlTVOq8PcinC2ujy4Qj+50
UQcUevh/HrUwwvbxmGGLqABC+D/w9H6hweamN3K+1GftbcXFrKVyK/+cdUXnTwA2+QXc5K/T
44CFt8h6VsHiwgTIVWsr8f+v4fP7PKVaMFX8tXI+LrBdT0hxgJt+jeRkqkIFOTW/o9BDiAMh
go/ROEFbi5Ot59VcvqE1Okbg/cedJGQrrGe99NZ7XppDYr872vMWPMU9L0+NUG7NIryGIqMr
aAD5zf2NzgLkiL2j6Uod0IPfoC7+rhWflgL5/20rDn92F05Ho9jMP7v3CpLKf+R0XgslZPME
K+5T3BIjgAByqO/OA/GLb/LP2q4x/Z4ooKe5eOA2RuXX5tjEH01Cg6TLB7XHSwrd4y1s54Hq
pO28P07oDtI0pQYYJ/COwcN6v0V5ITjuCKdqoMr3bOt9NResab9ROopIhtBAQprEXZ4Q7gkh
wz5DG4afBOPDses7xRP4D5ewZgXBl9OtNBCusjANB9GYwTSQoCQPoMKcpumqCVxDYsijy0n4
EDFI48xdF8b1TwIZznv6uEU98vJo4P/X4znupI5L+bOrNxjMufFl5HOW8ShbawkWvKMKhlwN
mwYzfoLekkNjk4X/jUOUkWv0dU6yPA/J8w1FPsmbnx9bmDuJBYmzCp+02lb1xu9L/MSXatdH
I93fpO+CJOdxFKw/8l5fQsME4RYUI83roXfDzdf1HuH6JS15/G+EcZ61dJqDrqLwGmbReZVj
LPIcY28uLrPfBSFJFjk5A1l+A8mfa8t1l+nIzlpiFfVAmlhPA/QoEnp4GD/De/oAf86jXka7
uSMtrBLeSqN4qkXevr+TZA+mUT7Bk52I1vTP8lpvrYPAWEyFM8KKXckHUMli4d0r0tctAQyr
+zQu0mEUBjdauk01/ftRKEFgyuFoChN3FFBrg657f84QNoEndbJFYVZ37UhFOJWb/1PW8153
J1jUXBlr/3YSr7SbcC/2jK6j+fnnxaxWNVAWeoN5XEdYzwgV3lIDYiLUFuhWsMaivP42khxE
4R7J8XWPoDz/GQn1+RadXIZoiMudx+jkXMD72U6Hi/Nw57KBcxpYRosiHpI8lUp2KhVfq0WH
xAvl79lGWmNTOLfwIK20qLKuGsBiOZgbv4v34i2LXPtuMcPiOZQLfhsHvFLximsURKBa1BUt
uGPmDuEmeaeBNojfR9K5+0GKUD2HRs2/StgjnbQC8Z7P9ZD4ocAJlbYuR+oBq13IYCu/I4jf
UN5vP090jraS0EtspoLEfkGBEs6PhddviaYmM9hII3EY9e+xlBP3UzblVScPJbldQ93lR3iQ
X70opkvX8nVXZHM2130mPaL1IH7waqBQ5DArziG4iIRjbkwZC9WRFljXn7fIe3QKlXm18wgv
0O9J9hDadJVMF1hxI9bRXOB+1/4TPeJTIKH5hfddfHyJBLPRmrtis7siJuRNuuN5tifMNYCe
Vgfx+WkUHH/lnG+uQPbe42dBqH6Gr8MDd3uNrxHHEyGMDM/6fiTiIO43ePtOEHqjP/5gYfrD
GMqI71Mu9fZzC914byX9oWhSebzKx+9YVAx2Jx935vSa4aBAs/q9uWZd0cwmysek9YJ2c67r
CTjMhdbziurcE79XLPRGwUuC8C7cqpdTCUH5/Fv7rlfW9kz+/FmSmWqt7f9YeLD6CbwX7hic
uAdqEUmKa+WAaqZ/xtbPViqA4Rb1FkQOGVznCAUtazDhCzJ2mSVXSn8w4TV4Bm+yKBzSwQEi
uLwM8YMXEdWQzuPpvH0QLl+32iYIt/IerOZ1jvcUZKfJsy6kZ4jeQfnewrXmjNDeGrf+Wm6x
0rnnbd38PKEYLm/Tnba12qKij7zNna+H+tKB4ozxLjo+NtIxEs+3hrye7jlCJls6BTa5JH5+
I2IoS1T3nmWhl+kWU55Rb7CQhG0MyRvIzNNVKnWEdM+gZTeRpG9abHO4ljJzLKq+vtnbDH6u
32xuBFSRog3KYlpEK6zxmgQfSKIcRxfnIL4mx1JIoJ+Wa6q8yrMQS+FIzgdI3xeoHI2GEAhj
f96rWuyBgnefR1nUc+2xCt9ZELq7xmDAo/gJaRDtNHA6rfvJ7/25F3bYrjnGLhVoEA2aD3F/
ucI2//39qWcgu1xV5npT4UkpYD63WdTUfXqO9XKB6+MwGvLDKPe7qLfg1LiPa/nTCY4U6MLT
PJ2L4rzjs7a26pVw/zjJhTsDr52kQLkgvbfUXKsRCLcT6NmZU+UGcOQR92Zowu+cNe1agOxr
xX2k/PceaZEXdzEFx7QGtbw30fBwoc/ZJHRQDkkJzUhiX2Td99Dtx8c9ufZd09s7OBe3WO0P
+36S99edtT2BQkrhLyEt7OAaPobyIekIsFKAfBlCojaWnqbhNKzmx2THYBqeyymTYNBMtbCw
rRD7PvgeV1KujaWsRE/am7TudwHk9VKSmVIyME/AmnBnIEMe9+F1Y809wHmYasmtbLCmf8i1
187HcSnJcF8m+86XQgXHSbdTI1rruLBWWxRuWm3RiQFC7wDyDE/UFC7gK0tYwaUWy9MkQQda
con6GP6ui58f7/DuPseRw3syYC0ipwWu/I96c1gOm3tp0V1v0fFvD5KYTyIh21JDo65AJbmF
ihDXoCa7Qi0AsuCKn2BQXRyMS6xys3OE2R6ysDgE79vOtXphwnuv5uefYFGB1Jct7Fnp78+9
gnEr95yTWx3c73fTgJPhEwHy+k0+r2XBWaNgENeIWdSfbwBl87tcN51lSBV+9xeuReAyi1p8
9bSpf9wxUkh4T0/WaxsdQ8gzX0mjqLUexK+VC+t1j2H7rmRtwN5jOq2OA2iBIJReqZlqwSNB
T1MAD4gJUNyb8ygUXEPg9oTPAYlCEcdj1nhFHEnYSWK8MWFzpb0eR1mUSwiD50ck55dSOdW6
wONwi7y0o0jiV2jPCSkD62mGR8pQ4bvQKkcfXPP+s/h3fShH5iXoEXzeWMqpLr7+qO2a2gIP
+xA+78P37uH9jVAM5DwjlWUudUnedXK7FR/L5tYJ2l9d5zkCWksQMKMcdwcpHEAd2JPzql1U
rV9M98Lr/UqCE2WwRb0FEaJ/NsHJg9+7fHSsefTaRO46wtLfw2fWs7eaq5Z83YpdyVJAvcdG
i5JOAVSgVttMFULT5WC6EIuDy4VDtRdCncjhQ0g37tZ2jbgXWzZyHQplXktrPcJ7ur9HNFtI
wG7la2dafVIdIBycx2+NKb9PqB1gQMLrN56K9Byr3GkA8gaeQXcsItbnlASjrIWf1W5Rcj0M
qaQ8cXisXLsrhPAutqgd1avSO4leIczj8xa1J8kzkgr4QHovsvIHIfhrBsbzPVxjvclrNa77
K+lgQYQGoWjkIH7Fig+2wH1CqoNLqXB5idNi3+0kOmnc6SMf5HfEd0U187R63GD3hV7gI/LE
4qd4CL2Hn3SKgdDrnVX+reu9F6/GO5Ok4SH+vJIWdz9P2A7na3jf3SUspWYEFJPLI/HDCZin
k2MEu5b7bhGt0X255zZqqwg1AozIy2nwoLUTWkFV02mgYFGoESG4PRN+73TVCIvCvK+WULRt
FuUswwCer1tTFptj9yjPshvr6HBPJjvy5Bwlrd1wAsDZ4lqqoXCvp7l+wy1KBXLhY+RcvpWw
rj9oUQSnTxljyhn78RZrh1udmX2792XPMTWQrcXm9Qs9cMj2vCoVvcvZO8gjdQN5n+7wSJ7z
DH7Iew3eReTP3CoyXxGr60T6/L1dsAy2GxAyp0z9LgB/psJxJxxU02kAng409UcIblAJcggS
eYn32rYSn+XO1V7tGaOCYDRKRsVI37QekF53kIJrYA5ecwvXcXflu4vU3cTP8b2PPhGFzv2m
hakQA7i+/5jweTB0XN4/ok1reN2t/H7WWkeh4FgqvvQ9Wn81mWe/0MM/ys2svBfuBS6iwbS4
scCOpOW90HvfMgrb0RTwIIdncwM93iQWY7UYEPNcIOR0QZ1In+6BUE/EPSR3k/B1kMxVc5oH
lNV3qSeOKOEYOJFybCmV94et+GQJJ+Mm0KOzWMaoEMPFXJdIKUAK06wq9GO5NX8vnR+uqOn8
YFzVzc9zHTDgpXYng2z0/o9vxPt6BV69N0p8puNbv7XwWDr8HdKPFtSL+DmX6s/4eIMp3FRL
4YtigXN4oy+3qIqtpczf+sf2DODPsDj+ToHtFjFyGJAz9lH+3SRa9jje55+6BUXwiyqA26x0
0rAg5AlrSfamWuT1q0T84JV4kIoPIbPpMT0xkK9DYV9ChTYwRvwKlEeuT+x9uhWCh8FcX5to
hM/vpaHcyrX3IxoiHdS9IIM9ibJAd6Moagy/a7z63B08sI+3Jz6S4EzAHhhLJ407i3hV/IvX
Gm5TriLpe0PrryZwCwSL5Q5P6GIhwetX6egd15j447QoDvWsD4d3KFA/yYU5wbPW1Ry1GEO8
5/Hzf0X6hLwDhs4ZNCbPJQnrrGC44j1fpWzZN0b8juRnTaZSfZRK1k87abOokAN77gndBsHD
udSJ51s6eZ9OjmM9umIiOE6+bWFhRnfl/HqLTslydRD+Z+C4OBROIaqHYqjP0cEQJ37fJgmd
ayUiTPWu3pGnr3bwF8idntD9Mi3pSiHGFSR1R9CKWG3F5yg7YgnPIPIMkA+4Pxfrck1/kTu+
lXNo3KQ3mE6oEZoLMASR84RWEshbmmSVWz2hNcVz9Fh8xpNZfhN5/zPihYIwtsbR0zHDdCyh
UIxP8nFbDT4bIdRLaHSg6na0db+12TvUpyB+KGKa4+kW6JUT+XuEqFGwB89gvEJ5MP8/0q/u
qaSshHwBBPs3FpZ0Q4j+nNbxxgpCFwL0Sv58ekxwOmL5MBc4SOVOkhq/5FzEO2qDM9eqa2Ir
CHkEzu8+iV6KE6zyGb5QfI9SZh1mUVcCkMBTaZyu52svkVCO9T7T9SK937LRT1SoL2Z5xkPa
8hjeZdfUGV7FayzMie+OwY/v47qfDIq9Pphr/QEaVY687hf7DOfVXFpuD4j45RcILR5nUXuX
sVa+1NydTtFCwjI3Ya1gAa4Lxvt87UGr7XFjWYKbH5Tm/5IKaIYVJ+cKQrMZQ6g6/JJF3Rzm
WmlPXIHKEgblOIvynCZRLt1hUUrJE/RqOMWH/KcJMQUvCD7mWxTiTVsmY02jk8ZBdIogDHtE
DwyQlVz/h1lx2zQYUIiwuYb/m7j+URDi8lwHcg90xfaKiF8TAQvmOlrBfUgCZ1lxSDJOWl4m
SXymjHDuSrCgzOTNcoBnwrULGMKNr7kRmhXzSOZGeUZoufwqRA82UMnBeEJ7F3gL0Q3C9xai
GAR9znBqQn8qwFH0dCzWtAtVGCVpG/6IqLn0hhYaLM9a9/Lf0froda7pNr6G52dzzbsaiX97
63+QZyB1cA/cW+nLCvkFKukQ5kXSKUKPR1vk5k7aBE9ZWNCxTlPXY0DJreAmVe6j0OyA0sMx
UUgRQf7TTZZ8zJRP/J6jAkOU4hAarvdY1GDXyaxl9KoMsMjbN82UTyvsPiKJww5cesPp1Ld3
WvWhZRA4eP3gsDmYf/8pC9MfbvXW9lauf3gYcQ4vIk3o4oEQ8LeMZ/KW+p8ifvkHXMMImwyj
JXKB7ep+dgsE4RMUIywss7AhkF05+RGmrvjx+cF8PGLy8gmCO2ptvkXVilBgN9I7UQrPUHGi
pRQKOBDW+ldsnwF/tTCMfL6Fnvb19JgIwu4CCNlUCz1x0LnXUK92p3+rOyjhDOpql3e/IPa+
12j07Mv1vw/3wPPVbEwh30DYZB4XYYcVJ522Jljbkyp8Hip/53LRLdT0liWBgqB9EAJev79Z
lL9X7ii3B+m9GMCf77DkvmhQqDgDfgp//jXlnSDsTmCtuuJK6Nzrrbi9SylPnHv9XpI95Pmd
Z2G+IMK3L8Te7yJ02Ctj+Rq8422V9JCIX3MIXywk19QZiwjHhs2ynlWbwhV9timcIghC9YDX
D9W27oSDE0sQv1YaoO95SvS2Ep+5iQpxDD0d02V0CbsZTp9ivcOz3ZdrHmk/06y44XgpQwke
O6QKIYz7Cwu95shv3Zhg+GyyqN8unDLosrG5mi8p5H8hrqD18RO+9h2SwZ72uRLpEwShu/BP
ODjNdj3hwNdHG0kQ/1BGkeH1xSR+m6103qAg1Fvngrihu4PzRqOV0a+q0J1u/U7n+9tJ6P5R
wvBZaZFnHB7vO6v9gkK+4YQgFhE8dcixQZuEq2mRSEgKglAPwJOxlMQPA6dsXGK7nvUL/Jmy
6k0ZoUIG9a2RvH2e6xjDRdqq+XvnzQOpw9GpSbmr6HvpOnEghWJZd5ip0ByAgLzWwuo65AF8
mdaBTlMRBKFeShGK7wTKIDSbxZm+/nngDsjzQ0XvmgqfCY8hThl6KkHxCsLuBHTrH0j6sN5x
zu7CKnUuSN86Er9XLLlKt2BRnh9awLwq4ickAXkHrr0LFiMaTl6laREEoQ5oowyCB2M8leFP
g3G8hd4LH6tonLZa+fDtIgtzodpMYV6h8QDDBmFeV9F+loW5fpXQx3v+Upn3uTPht5AsWjX7
QMSv+eC7n1HwEc+zEQRBqAV28hFpJq7/Hh4nlFGG1RC5HaZzeYXGxGau7d+TzE22sEXLiioI
Wh/vM5L2Ak72OITP0bXDnVtdcc+I+DUffPczBC/ybCZZ8okegiAIacHJFnjz0KJlqoUVi1+z
8Gi3tb34TEFoVPzJwpy9MdS5WPdf5tovhTcsKmwqdewbKt/R2BwFIAj1Vt3DUsSvOeGf44ue
WkebDjUXBKF+QH7xUZRBw2iAKu1EyBucV++HFnrk0GT5GAvDv3Mq/O0MjnJGzyyLjmKtuj2b
iF9zAoUecD9/hhYIegWdbN3rLi4IgtBTIPIAr9/n+DMS1JdVoQwFIUtwJAyOFbRbQX49Qrg4
SOFJK92CqNDD/1PV34n4NS9wrBhc0GguiSaTx4n4CYJQJ0D3zCXZQ+L7PlSGC0wtWoR8It7e
xRV6FHbH5hOa1xKZQaH7AQvzbGab2rsIglAfoCDjWhJA5CkNpzL8nSl3T8gfoFtR3IGjC+H1
u9R6ntsq4if0GOifheOQfkKLG0UeN3q/H2hhKPh5CWJBEGoAtGP5i4WRByhDnOgxU9Mi5BQI
+d5tYWqDa2J+VQInq6m+FfETUOgBbx8SrC8iEUQlEU73gAdwAYmfIAhCWvBzknCU22dpZCIB
HgUf8zVFQk5xczDGkvihuBIhYHgD0YsSrY4GWfGJNiJ+Qur3Hvk0v7HQ6wfBC/czvH7wACIM
jMPPWzRdgiDUSA6hp9k8C70gkDu3B+OLppxjIZ9AaBeNnada6HCBvv1GMEZYWPyB02r2tBrm
uor4CQA8e+4c3zMsbLXwbwu7gfelJaIGqYIg1Arwgoyj8QlPyOUWpp4IQh7htzP6qoVHuaHK
d4OFEbeaFjiJ+DUvfDcy3MxIsn6QFog7yg35N+is/yFTpZ0gCLWTQ/CCuKbOwH7ee9DzDKGx
G0zFZ0J24bdtwTpGRS/aGSGihlO00MoInm/kufa36MQOET8hNeC4lwOD8SIX2OJgLKUFgpDL
TApiNJscbLuh8kgQhKZSiPCCnEHjEwYnIhArSPogkxaa+vwJ2TZyYMT8h+v6MQsLm3Bu9UHU
yY9bmN/XIeIn1AIHcpHhwPRTLfToXWdRT63rKYTx+2NNJ3sIglA7hQhdBC8IEt1/asXHSSLn
D21eRoj4CRkHPHlXWhjedUcXwtmyP3Xuw8F4Mxj/Q3Io4iekCnj6fs5FiPLyr1jY3uWXFiaY
nmBhU2ecBYjCj1tqaYEIgtD05A+YGYzjLfSCgOzdRbm0lIbobZJDQkYBvoUelWiThhzWn1lY
vf4Y1zt0sctzPdKKj2IT8RNSAYQn8vge52L8Ja1rCN5zuPiup0WCBs8TLMxJqMlCFAShaeH6
haKgDJEHNJZH6Avhru9beNoBUlHQ6qKPpkvIuIFzk4Vn96KRM6rXnyHxA4bxERE5V1SZus4V
8RNgcZxE8vdjCz17d5D0IcfGtXYZTeInCIKQFvpR3kC+IK0EhWVIK3GN5ZH8jhM9cLoH+owe
bKXPNxWERid97vG7fP5QMLYHY6eFRR5d/BkEED0tl5g8fkKNgMWFsMrDJHmonnNJ1h18z0EU
wOqtJQhCWnjPQo/HARae3gGca2GLKddY/rcWNpLfi0RQzZ2FrAOePETcXrLwEIWdHABaqMGz
PZa6OXWI+AluHSCR9EwLE6thce8few8IIIpAbtR0CYKQEuDNuI0D6SQIg6GtFLyAa0j8RnEA
CPv2I2EUhKwDkbYhwfgmyZ6fynAI13rqrdRE/AQnfI3WBaqN4H5u9ywQoKWWC1EQhKaFK9ZA
Ksm7FnpAxluxF8QBraWOMHUZEPKjexH23WZhDuse3u+wzj9hNajuFfET4kAo92QLE087KHjf
pyXSrukRBKGGuJNEEEUdwzz5U6D8QSoK2kstkwEq5AQI+7pI2lQ+ItcPBU81aesi4ieUIn+T
LazwbacVAgGMcAuqjZZoigRBqBHmkPw9RKL3VjDWWRTuReRhLxE/IWe4ifoWbV1cyHdELf6R
iJ9QTvgCqKzroAWCRXmiiJ8gCDUGQrk4rePXwdiXr7nKRxSD6Og2IW+AV/t7fD6Fjzi+DQ3M
11qKlewifkIl8ofcg9m0vN1CfFjkTxCEGqLVMz5/b2HYC8YnPCFocjvT1GFAyB/gxXY5f1Mt
dLp8wcIUiFQ3lyCUWx9oneC6jO/DhfhpEj/10hIEoRaAXGkj+cMxV+g24ArOkPunDgNCHvUt
gJw/FDohpQFFTseT+BXS/keCUA6zaGnD5YxQy36ecBYEQagFXEUvlB68fWguP4CvHWU1PNlA
EHaTseMAzx+qfNE/F83NT7GwifkOET+hngsRwhf9hqaY2roIglBf+QPjc0Mw/kDyN4IySOf2
CnkEuBlSGS6wsMhpZjButZS83CJ+QnfWyjUWhnuRdP0nC8/0VZK1IAj1kD8o+LjUwpw/FHx8
ysJUFHn7hDyveRxliFNtDrGUvNsifkJ3rW+Ee3Gk0hgLu+ufbfL8CYJQH/mDnD94+3CW+JUW
Hd+mcK+Qx/UOwNt9TDD+aqrqFXYTNlnYV2sAyd9HTNV1giDUDwh3IccP5/aeQjIo0ifkFY8E
48hgvJLWB4r4Cd3Ff4NxD5+vtPCQaVnbgiDUEy/T8ETYFx5AVEEq8iDkEdCtqTpXRPyE7gJV
RVdpHQmCsJsw0kKPH4BuA1ODsdh0fq8giPgJdbVIBEEQ6oHDLezlt97C4rIFwXhW0yIIIn6C
IAhC/oD0kvuDcYWpq4AgiPgJgiAIuUanKawrCCJ+giAIgiAIgoifIAiCIAhCb4FjAnGUYKbz
2kX8BEEQBEEQmgQifoIgCIIgCJWxQ8RPEARBEARBEPETBEEQBEEQRPwEQRAEQRAEET9BEARB
EARBxE8QBEEQBEEQ8RMEQRAEQRBE/ARBEARBEAQRP0EQBEEQBBE/QRAEQRDM+gXjQ8F41cLm
vU5nFjQ1goifIAiCIOQLHwnG34KxMBjfCsZWTYkg4pfta987GJurfG8h4Xle5wXX19PDqPMy
P87SX5vjaxSEZpT73dm7q4JxWzBuCsbHgjGfY1VO56KNY2sTrQdrNnne2oQb3j2O5mZeEIy5
wVjPxZ50Fl8h9jyrir+a7+1+f2YwjgvGB4PRHoy7gvFIMN6uQJazOD9Jm/9YCvwbgnFnmfUg
CEJ24BvwBwRjO2VaH77exccdHCBBM0j0rgzGT4IxORjrqDOWB2N2MP5rUSh4T9s1PNxIMqMc
2flMMK4JxuJgPBiMVxJIYF4MX1zHD4PxWjCmifjlC4NjZMUt2M5gPB+MLwdjAjf+smAs4ob+
j0cG27iR8VnPWnVewkYWeqU2MH5uobCaZWF4Y2wwLgrGrygUN/H1hzk/bwXjDQq7Iyz0kK3N
wFwMDMa+FOhJQuw/fMR1H03yt5bXqnCPIGQb1wZjSjDe576GbO9LeQZsISk0yvuXOUCMBnCM
Csapwbg0GC+RLMFIHhqMMTQapzUgSSr3faDf7qAs/z1l/pxgrAjGC8HYmCPDF9fxeDB+GozD
eZ2dGdbvIn7EKcH4Pjcxbuqb3u+2BePJYLzIm/6lYIzncBv/af5NX1qH2OxfDMaSDJPgQ4Mx
IhiDLAx1v8PHvt77ttPS28b3OewRjI5gTAzGV/m3q4PxOgUehN2twbgqA3MxiYR/srfROy1K
AYCgOykY9wbjhGB8lmtiTTD+GIx/kfjCYPhkxg0CQWgW9CdRu9oiL9/I2Hu2UN6voVwcScK3
nWRhj9j7OzjGxF7fr4HnAc6M84NxWOy6t9GwBZE9hNc0ytOHIL+vkuSaRwYbneccSHkdl9Hz
eW2XWRjhWRmMZ+jYWJKgP9/LwPU2NfEbyRs5gD+P8n7X5TH+d72fd/IRXq99Ejbyr0kUs4ov
BOMKCrV3aOn29yxb9whhdxA3xEBvblq8RzdHbl7X83evZWAe2khoIaxnch9st8hT2dcTggP4
u734fFgwjqFnYAvfi3A4wj2XVGFRC4Kw+7CDpAXkZihfe5GGntvT73GvI7qxJxX+W9QTl9Pw
jRNF5yQAEVpHUjmvgecBDo4bPf3o9OImyrstnoOkncbwGE8nbqPc/FMwvmaNHQWBPEbq0ueD
8ahHbt/kc+BO6sSJvMZzgvF/dIA4nGY5KfLJM/EDEbnHwqqsTu/1gdyY27zX4AG7iAvcuPiX
kfmv9F5/iDc8qzkOIDnwfH6Awu0Nbugd/NnPz/OvEZ7T+z1SDKHwNq1CzBHc5f8MxsGWjTAv
SN9YPn+T14F7/FEK+rcp/EBsV3nWnjMM+lgU7tnEvz3Qqi8WEgRh9+i7rdQHGP1o0Ln8PB++
VwcybRJ1xAF8DZGOVy0q9njJkvPDG7F4AN8J0a5PU8bFiZ/LdR9uYUVzuyf3MRcbaOBD3s2i
7mhk9Od1jrRdvbtJ2EnZfnrC7xDa/5llvLgnz8QPCrhSyHEgrZ6zuLgf4ybupAWYtznbwXnZ
HJunuHXkHrFJLuZif59zgrxIl98XX/ydGZkHCK8LeH3zY+RuAIkfLL02zs9gCsB9YgLyNl7z
0ZwbkT5BaGzPT9xo35gg3+MkbbBF3jGQH6Sz3G7VVfwXGnQeyoUrQfgQ2oaHa38Lix//Stn/
YoKca3SdiMjOUSTr8yyKSvWzyHPnnsPJEY8Obie5xfPnLIqMifhlFMjNGheMv9By+WcVyrtZ
wnitJH1oYfADEhyQvXdyMgedCUQ1XpgCAXiLhbk62OzweqKK7x8kfu69K6RTBSEz5M9ha4Xf
OxKHyMgXLfLwP19GBmZZNrrrPd/CCuYNNJDvtWRvZlauGffrLIs8lqVwnGfc473w7C0k6XNp
Pa9YDor7mp34PRGMT1gU5ixl8TWrgGz2hqUDSPruseRqr1bLdnsfQRDKy0AXHl7RJNdrJHpo
cxYv3MiqnCsk3D//WkD4UNmL/O1tfO9kzzEwkhxhbV44QrMTvx0JlkyhynnLSx+jcoR3q+WX
1FS6rlZL9gr6fyvSJwjZAtJ79kxRiVfz91mSEa1lSFIhw9dViuTiGs6z0KN3oYW5mi7y00Z+
gK4fyz0SnHl5n2fih2u7jGweHhv053MVTMjhWlPiBuJm9/MIIZJ/4SZG9e9sa/xE1qTrGeRd
tyO7OxPWgHsvXNp+XkO8sbXr94d56sP37OBcHWlhD7wVGVonrlq5XG6OL+QKvPb3cmYICEKe
0UpZhfSe4/kacrtdmy/kgl0Sk1178/2Qc2h9goIOhP9cq48Wb/8Pt6gLgFGOoigEecSzGlxO
tHnOEKvSGZIHmYdruNqSDybAXPQnGVyfE8Kbe+KHpNTJ3IhjLIrRYwMv5cbfnHAzL+XfbeHf
7s3Nbdz43/BIU6MD5AQu7IkWFSQYrxtl7VdZcdUZihR+Z2F7kvc9sohTO26MbRYIuYc4z+a9
HzkStzY48XP3+hQOXO/LFrUwQEX3HL4P14d+fkP5+9f4HMnC93FedOa1IDQ+9uR+H2Jhu6qO
2O83WdTay2Eo97j/3kEe8XMnc2Cg1cu5FvX5a/H+ZlYDkYV+dGbAUN+PMhtdCRDmnJIguwfS
oG+n/tyLn3G3ZaOLQyWsjfEh/z5BV6JH63c8vSCPXwMDhOUOLlbXiBJA5S66qW9NYP6YDyTu
r/TeD6aPSp4PW1jRlLVzDBfye/vVSs9xEccXORY4CjrQtmA8r/02zkkc6Gt1nYX9jsZTYKKn
E3rcPZ4BK8/BHUl3rkUNXSd778M6gqvflfZDKD5FEtieActX3khBCAG5/QQHqnJnW9ScGIn8
OKIs3qlgCQ3fqfwZBV43l5AnN/CzpsR0xwsNNg9ocYaK3UOtuJ2L61sax8G87pbY6yszQvx8
GYiw7gjvegdRR/7J4wDH0bHhYxzH03kgu3lv53KjtyEdkUPfufllFgc2un/CB/72IVo5WevY
vZUWipG8PU5yg7MnOxM2xWbOzXn8+SUrfYbhRn6264cH628SCebqjMwPvv8CPr/eE9j+3GBO
lpP4Qah/leQPVvC7GSBWH7IcdJoXhJTgE7sFJH5vW3nvlX96UWeZ9230DGqj0XybRWHURpEV
L9FghxdvJg1YkNQLSIrjeIzyzx2IAM8oziyem5F77ua8jaTuBM/IB/b2rgXvPdF2bdLtiOJg
Eb9sXBtu5Drv9aElNqF7jht7DJ9jMbhS9q0Z96I8zw2LkMUQj9zErwPh3i/xOSyjkVY62Xcw
rSBsiPs8MpU1cmwUgKdxfsbzmgsUFm7NfJuvt3pkqrXB98B/pesFIRHwWCFtBw3t9ykh2yEP
0ce0K0YWktCPhApAOtFdVlxAmIbOaLPyrVWqwQ7PcL+GMv65Es4A8/7fvpyvSzMo543f/SsW
hrX/RhKL12bF5hTOnsMsavYMRwbyNhHpWZQncpRH+At3EW8eyrUPKsHa3WI/l0IA3p2p1r1k
155gJDfUEyls6HL3GQRnIS0ZCLM7S7z3DIvO7d2T360ULubmudXSa96MZNrNMWHqilHcyRht
HGl4Yd19X0WLF97dCZwffDYSf+Hlu5/ksJZroZZ7QBCEYmDPb6AM27fEnjmW+sDldQ8p83nH
WpT2cq2l39AdhGQQHzf20gHh/vZR6iDoxYH83EIJQgviC+/fghQdIP2se6lT/Ujcnrfup1y5
UC6Md3gsf2xh+PpzVhwFPNKik5p+a2Fo/9U8ydRmSUrH5kbHbhy3g2T9QxOInytYmMCfH7Ta
FSjg/yBvDB61cRQ8yDG5scYE4GESv896lqPvGYUAQNIvij6G8nmpzxtIYYAQwe0pkuDf8n5t
JwH9sGdpuzN0ja/h5+llSGx3yVEn7wMIP0LYLtkZTatnpGy5C4Kwe/EShx8FaY3JuHGxvxla
gvCAkFzJ53+39E8xmmRRnuHeNEh7E3J0338lHzto6JcitC4KdB0JVxqeR+BCzt06yn13JrI7
OanDosJEzP33qb9/QJncXXnsyJ/7W+jcS2jUr+LvrvGcPzdYDlNlmoX4FUh6ziHJ6ijxvuP4
u00kALUAFvPvSVoGWBRiQEXYNKtt4chqizyfIxKI7ZncfLP53eDp6l9GEDlvX1o5DxeT/A0n
8fMrqrs8wufjsF4SvziQxwKv56+4btp5jculJwUhVwBxeTNBjjgiMY6yEsati5YcZMlncp9s
UaHIjJS/JyI0P+JzeKFOpzGaRoP95fxMyNn3EvhBgXoTv4e373nve6RxXd+14gIT8+R9H+9/
oWvEHp4+uIn6qycEu4X3fgbJ5ETqX+i0L/Ae4/9/23KaH91MbSj8Uv39En4PgnMKn/+fpX8I
s9tEIyg0+pP8uU2H55+wKIesFl4lHD20hsLs4x7xc9Ytctwe4GJH4cLr/L7xfA64weEZ3UZC
nRaQE/Mk/+8mEsv9LTpf2AmCdosqsxamfI/wf6aT+OH/zaUFaKYKWUHIk+4rkEAZyZzvEUJR
1BWeMTifhnBHgvGJ95/E54gUpZ0HdlQCOTqK3zENR8F2ytRPxogO5uJ/Lcx5h6y/zvt/acjB
IZTz+/Dz19Dx0O7JeX+u+3JspoOgTw//rx+5QW46cjjP8uYV+hhVvjPzvPibBfBKLbXowGaX
S+b3dDuC7+2swf/3PVdoM3MlF+5Oz3raN8VNlQRsWlQ1j+e1+j2JJnFulnmbA8+PpeDzLdzR
fO+vLayCbk3pey+xqD9WJdQyuXiD9/xFi4o8dpogCHmAk1UudQTeuuE0+AskfTCQESGZTbn9
uiW3OxlNcrSFxmstjUOnR4bx//Y22uLOHh5FWR/XfZdRTyF8nXbUYyY/E/posYVtb961qAq6
j6cz+3j6cTuv/58pfIdOkvWJFlXyYk6+Z7XLuRfxq7N1B7JwOhf5UJIMdwrDFdxUS7nR0/bw
uEX0Ci2MfWIbGXirBv83jnV8HOq9Bqvuago5l7jrSE7c0oS37zt8vrDGRHV3KAMIneu915D/
8TgtfjVqFoR86YRllHUdJHUgfvAmuerc31joBevPR1cI4nvGJpGYPOEZwmnKxMUklb4s3hIz
UHuKzR7xOyRB1o/i/NxTAzkPnYio03qrrhAG/QSf5dyn2VIFxRvw+DlP4zyL8v0KeV38zYRO
i3LcTrTIu3QEXzOSw1rm2e3gRj7WI1gtFBor60CkllNo7G+R1/NECq5brNiV/xot2Q5vY17M
ueppfkU5DLQovLKN3wU5OB/kaxAQOA4OScgH8v1pd48/k4L/MQoCCD40tH7EFOYVhLxhAQlU
h0X5zONJ8FZ7TgB32pHLQXapQK4vHLxS02okvyFnF/F7Odl4uaUXUkZ6Dbxdg2Kvn8R5WW1R
4UstZODBJOCV9O56vhfE+yWLihN7+52Q2/h+s1k9zQC/QfE8EpejvN9fxkeQmT8m/F3axK+T
5G+URV7GiVYf1/IqbuSPWhS2mMjX5sXe+xR/5/raDaYlDOKYdruCgbQqx1R43zZuUmf9gpxd
ldJ3cN7M7bzuviSAIL9nW9jvSRCE/OgEv81VB3Wi0w0onvDbpsDz/02PIOL1m2g0owBsfg2/
7z10UIBg/jBlWbTGolM7HKntR1ILTLcoLSpNQN4i0nQYyfeL/B7r+OjL/HbeH3ynEZyP76Xk
pLnCir2p4yy5f62IX4aBzXsliY/rCTSav0PuXb26cqMoAkfnwJt1XZ3+rxNgsHKnchP146K/
PIHIOe+gc4FfTeHwawq5tEr640COhfN+4gzdj3mC4MMkzW6DnpYi8buZRsGF3v2YR6VwCxWE
TsEQhPzoP8hD16MNLbZOoPG52pMzDltoFLpeftAbB/H1e2v8XeeQkL1VAxkEefsmZbsLd5/M
eYDh+7sazf3FFuXVjSzzXpd21GJRhAyy//YUiN//8jvgHiKP8UsWdas4x1TVmxustqiyFXH9
40l88PoTdfwe3SlkSBuugAOl9PBqLbXk6th/W3g2IXI/JnG+urz3plnssJHW9PkW5dRVAgjs
/in9/6Mp9CHoZnuv38XrhjA40rLZsV4QhF3hvH6QZ8jrPdWifnXTbdcKVldV6vKjJ5GEPOgZ
qrXEqhp9Lrxtrp+hk6ff8Zwhhdg8pIG96fhwPfqeI6kG3rGoyrqDzpn3+T6XkgWy/nYvCT+c
HpdR/99KB8KdJIIgvVfwtdzl+jUj8dvARYYF9COLTql4znKe0Old17MWtUsxWrZJlg0EHzxu
aGOAsHQ7SeLcGsxTK+e/O967NE8L+YWFIZt4L0WQ879YWBSE5qFPWu+75guC0DjYZFGeXzuN
vyQD71nKqNEkCDAUkXeGSEFWK0CdHFtMsjOChNb1L6wV2YSMfYF6ZTJ1ivPmYS5dF4W9SbQP
oHz+Ke8R2o5t7sX1AhdSri8l0XeE9yheP6JJ8OTWssWaiF8dyc8rfO7i+l1WmxYujYr/0kIF
8fN78SWFbl/kZnQHeX/Lik/8yAMmcKND+DyS8PtZFPLISTnYko81EgQhm3iPJKKDMu6bJUgF
XkO0CGHJiZ7DYK3VLu2lXs6AdSRal3iy/QFeby2AubrNoqMxk37v5txFx/pZ1Iv33l6SseEk
nNB/13rfAf/v69QFWA+I/pxlOcv3a9b2FO5wbiOpgVUzM7YR8gxsqmdo4WFhL49tNh/rLeqj
dJdF4em8zBPI3Nd4jTMsauDqXx/Czj+38Pi280gOWyiI3hEJFIRMA10CBnpkp5yXC7LyVO5/
d567WfZ7vv3LomMycW1Ifbq9hDxMC9312G21qKilJ9zFD/HebFG+emfs9/gZod/r6RBALuI3
vHucee9fsxK/DVTYzuO3xnLcrLEEXLHEkxUWsUso3pNWUK0tz3oA+Xz7cw7OsShvBEe1vZBg
gcLCdz2u4PnDkXsoyhlE67DTBEHIKk6yXaMfpfCu9xznxebFEwRniOvnZySBbzewkd/d7+R7
ZOHBQ6eKTVZ8zrz/mUj5OYrOERD9n1mOUsGalfjFj8CZ34Rz4Ho2VXPszV4kx+tzcN0QANdY
cduYbbR0J5IIx1slnMn3u7zI0/m6q/ITBCF7ug8KHPm9l/K1vlW8/wnPafBujuZiB+X7KG8u
+uTsnuNeI61nMn/uokOjFF6m3Me9Pt/CYhQ4BrKc09nUxA9nErpE0i6rXR5DI+M+EpdKx/B8
gJYgkn835+C6d5Lo4b7jPMY5FvWJai8xH6iChusfeSXwFqINDlo6oJ/WEhMEIWtwXhuQONfH
D5Wj75V5fyuNPzRORlupDTmaCxxZeoz3Gqpm89TKZAcJ/lTvtQ7K9M/Zru3U0PLtq97PU/iI
wp/bsq4Lm5X4IaEUXp3htNqeb8I56LTqQpQgQidZlFSbdVc3vvstHE9XabnNsajKD6Gdu0iI
N1h65xQLgrB75MENJH8gO5XasiDP7CI+f8PyU+3Zn6QXcn4Pi3oYZrVoJQ5UKl/N587oh/6D
B/DQGPHDPT2EBv80jwjCG/pMHhwgzUj8Wj3CM7/JCXA1c1XwLL+8zNOSHs6De9zsbX61dRGE
bGOjVd+fc6flyxPm5Bca1aOn7XbORfzM9qwDBXl38/lCcgB3kldXgjFwtUXRLpB9RINet8o5
oCJ+GVr0QmlruJrXmmUeCglrR+tHEJpHDrTmVG+A/LxIYrMkh/IeHr1JJUh/EuKV3YgQ/iFP
xKeZyUwhZ4t7dxBBzYUgCNr32b4eeL+uihm1Qk7v/f8DpSyv5kSWeTEAAAAASUVORK5C
YII=)
Рис. 39. Математики установили, что умножение стрелок может быть также выражено при помощи последовательных пре-образований (в нашем случае – сжатия и поворота) единичной стрелки. Как и при обычном умножении, от перемены мест сомножителей произведение не меняется. Чтобы получить ответ – стрелку X, вы можете умножать стрелку V на стрелку W или стрелку W на стрелку V.
Умножение стрелок устроено по этому же принципу (см. рис. 39). Мы последовательно проводим преобразование единичной стрелки – только преобразование стрелки включает теперь две операции – сжатие и поворот. Чтобы умножить стрелку W на стрелку V, мы сжимаем и поворачиваем стрелку настолько, насколько требует стрелка V, а затем настолько, насколько требует стрелка W – порядок опять не имеет никакого значения. Таким образом, умножение стрелок подчиняется тому же правилу последовательных преобразований, что и умножение обычных чисел[8].
Вернемся к первому эксперименту из первой лекции – частичному отражению света от единственной поверхности – имея в виду последовательность этапов (см. рис. 40). Мы можем разделить путь отражения на три этапа: 1) свет летит от источника к стеклу; 2) свет отражается от стекла; 3) свет летит от стекла к детектору. Каждый шаг можно рассматривать как сжатие и поворот единичной стрелки на определенную величину.
Вы помните, что в первой лекции мы не рассматривали