100 великих научных открытий (Авторов) - страница 105

Увы, в то время наука еще была не готова принять открытия Гельмгольца, но постепенно ученые все же оценили важность его исследований, и в середине XIX в. закону сохранения и превращения энергии дали почетный титул базового закона природы, объединяющего все физические явления. Позже У. Томсон, Р. Клаузиус и У. Дж. Ренкин углубили теорию Карно, Майера, Джоуля и Гельмгольца, и научный мир навсегда отказался от идеи «невесомых материй».

Второй закон термодинамики

С открытием первого закона термодинамики стало ясно: все тела, что бы с ними ни происходило, постоянно обмениваются энергией, которая при этом трансформируется из одного вида в другой. Однако в данном законе и слова нет о том, что такие превращения могут быть как обратимыми, двусторонними, так и направленными в одну сторону. Почему упавшая книга, ударившись о пол, не подпрыгивает — ведь по идее она должна была бы нагреть половицы, и их тепловая энергия, перейдя в потенциальную, подтолкнула бы книгу вверх? Почему горячий чай остывает, передавая тепло воздуху, но сам после этого уже не нагревается? Почему качели, если их толкнуть один раз, постепенно останавливаются? Согласно первому закону термодинамики, механическая энергия качелей переходит в тепловую, и нагретый воздух снова сообщает им энергию движения ― но в реальности так не происходит…

Ответ на эти вопросы дает второй закон термодинамики: не все виды энергии склонны к взаимным превращениям — невозможно заставить два тела обмениваться теплом бесконечно.

Первым, пусть и несознательно, на это указал французский ученый Сади Карно, которому принадлежит честь открытия основного закона сохранения энергии. Карно считал, что все энергетические трансформации происходят абсолютно без потерь, но во время проектирования идеальной тепловой машины выяснил: наибольший коэффициент ее полезного действия ничтожно мал — всего-то 8 %, а с учетом отдачи тепла в воздух и вовсе процента два. Для вычисления КПД ученый определил температуру нагревательного и охлаждающего элементов (в кельвинах), вычел вторую из первой, а затем разделил на показатель нагревателя. Полученная формула впоследствии легла в основу второго начала термодинамики и значительно помогла оптимизировать работу многих машин.

Карно рассудил, что для повышения КПД нужно поднять температуру нагрева, и предложил задействовать в качестве рабочего тела турбин не только водяной пар, но и газ. Это помогло, но добиться стопроцентного результата не получилось. Разогретый до 800 К (527 °C) газ охлаждался затем до 300 К (26 °C), однако максимально возможный выход составлял не более 60 %: слишком много тепла расходовалось впустую.