Нереальная реальность. Путешествие по квантовой петле (Ровелли) - страница 91

Это должны быть истории спиновой сети. Представьте, что вы берете граф спиновой сети и двигаете его: каждый узел паутины прочертит линию, подобно шарам на рис. 7.1, а каждое ребро графа, двигаясь, рисует поверхность (например, движущийся отрезок рисует прямоугольник). Но есть и кое-что еще: узел может разделиться на два или более узла, так же как частица может распасться на две или более частицы. И наоборот, два или более узла могут объединиться в один. Таким образом, эволюционирующий граф порождает рисунок, подобный тому, что представлен на рис. 7.2.

Изображение, представленное справа на рис. 7.2, – это спиновая пена. Пена – потому что она состоит из поверхностей, которые встречаются вдоль линий, которые, в свою очередь, встречаются в вершинах, что напоминает пену из мыльных пузырей (рис. 7.3). Это спиновая пена – поскольку поверхности этой пены несут спины аналогично ребрам графа, эволюцию которых они описывают.


Рис. 7.2. Эволюционирующая спиновая сеть: три узла объединяются в один, а затем вновь разделяются. Справа – спиновая пена, представляющая этот процесс


Рис. 7.3. Пена из мыльных пузырей


Для расчета вероятности процесса надо просуммировать по всем возможным спиновым пенам внутри коробки, имеющим такую же границу, как в рассматриваемом процессе. Граница спиновой пены – это спиновая сеть с находящейся в ней материей.

Уравнения петлевой теории гравитации выражают вероятность процесса через суммы по спиновым пенам в заданных границах. На этом пути, в принципе, возможно вычислить вероятность любого физического события[106].


Рис. 7.4. Вершина спиновой пены. С разрешения Грэга Игана


На первый взгляд этот способ выполнения расчетов в квантовой гравитации, основанный на спиновой пене, кажется очень сильно отличающимся от обычных способов, которыми делаются вычисления в теоретической физике. Нет заданного пространства, нет заданного времени, а спиновая пена кажется объектом, чрезвычайно далеким от, скажем, частиц Стандартной модели. Однако в действительности есть очень сильное сходство между расчетами на основе спиновой пены и теми, что используются в Стандартной модели. Фактически здесь даже более чем сходство: техника спиновой пены – это на самом деле красивое объединение двух основных методов вычислений, используемых в контексте Стандартной модели – фейнмановских диаграмм и решетчатого приближения.

Фейнмановские диаграммы используются, например, для расчета процессов, в которых доминируют электромагнитные и слабые силы. Фейнмановская диаграмма представляет последовательность элементарных взаимодействий между частицами. На рис. 7.5 приведен пример, представляющий взаимодействия двух частиц или двух квантов поля. От левой частицы отделяются две другие частицы, одна из них, в свою очередь, распадается на две частицы, которые затем вновь объединяются и сливаются с правой частицей. Эта диаграмма изображает историю квантов в полях.