31>3 = 30>3 + 3*30*31 + 1 = 27 000 + 2790 + 1 = 29 791. 1.22. Вычисление квадратов в разобранных примерах основано на формуле
a>2 = (а+b)(а-b) + b>2, в которой удачный подбор числа b сильно облегчает выкладки: во-первых, один из сомножителей должен оказаться "круглым" числом (желательно, чтобы ненулевой его цифрой была только первая), во-вторых, само число b должно легко возводиться в квадрат, т. е. должно быть небольшим. Эти условия реализуются как раз на числах а, близких к "круглым".
1.23. Пусть надо найти квадрат числа а, заключенного между 25 и 50. Тогда, пользуясь формулой из решения задачи 1.22, получаем
а>2 - (а + (50-а)) (а - (50-а))+ (50-а)>2 = 50 (2а-50) + (50-а)>2 - (а-25)100 + (50-а)>2, откуда следует справедливость предложенного способа.
1.24. Приведенные в решении задачи 1.23 выкладки справедливы для любого числа а, поскольку они не используют оценок 25<а<50. Для описания же процедуры возведения в квадрат двузначного числа а, большего 50, имеет смысл в соответствующем описании из условия задачи 1.23 "дополнение" числа а до 50 заменить дополнением 50 до числа а, а вычитание 25 из числа а - прибавлением 25 к уже найденному дополнению а - 50. Действительно, с учетом формулы из решения задачи 1.23 имеем
а>2 = (а-25)100 + (50-а)>2 - ((а-50)+25)100 + (а-50)>2. Например, при а = 63 получаем
63>2 = (13 + 25)100 + 132 = 3969. 1.25. Для возведения в квадрат числа, близкого к 500, достаточно отнять от него 250 и, увеличив результат в 1000 раз, прибавить к нему квадрат разности между исходным числом и 500. Действительно, по аналогии с решением задачи 1.23 имеем
а>2 - (а+ (500-а)) (а-(500-а)) + (500-а)>2 = 500 (2а-500) + (500-а)>2 = (а-250)1000 + (500-а)>2, а при а = 492 получаем разобранный в условии пример.