Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи (Дмитриев, Семенов) - страница 30

Пусть атомы характеризуются валентностью V>1 и V>2 и, следовательно, мультиплетностью по спину M>1 = V>1 + 1 и М>2 = V>2 + 1. Если при взаимодействии атомов связываются по одной валентности каждого атома, то в молекуле остается V(1) = V>1 + V>2 — 2 свободных валентностей и ее спиновая мультиплетность M(1) = M>1 + M>2 -3 (в круглых скобках указана кратность связи). В случае двойной связи V(2) = V>1 + V>2 — 4 и М(2) = M>1 + М>2 — 5.

В общем случае j-кратной связи

(3.11)

(3.12)

Равенство j нулю означает отсутствие валентной связи.

Изложенный выше формализм, развитый независимо Гайтлером и Лондоном в 1927-1928 гг., интерпретирует понятие валентности как число спиновых моментов, спаренных при образовании молекулы. Однако в рамки этого формализма не укладывались молекулы, основное состояние которых является триплетным (В>2, O>2 и др.)" Так, в случае молекулы В>2 спаривания спиновых моментов электронов не происходит и, согласно (3.11), химическая связь вообще не должна образовываться. В связи с этим можно было бы повторить слова Хаксли, видевшего великую трагедию науки "в умерщвлении прекрасной теории мерзким фактом". Однако приведенные примеры, на наш взгляд, указывают не на ошибочность концепции спин-валентности, а на необходимость дополнения ее концепцией орбитальной валентности*. Идеи, позволившие осуществить такое обобщение[7] были впервые высказаны Гайтлером в июне 1929 г. [49] и явились естественным обобщением созданной им и Лондоном теории ковалентной связи.

"Прежняя теория валентности,- писал Гайтлер,- рассматривала лишь те случаи, когда имело место только обменное вырождение. Однако для галогенов и элементов группы кислорода[8] это уже не верно. Их основным состоянием является Р-состояние, что говорит о наличии вырождения по магнитному квантовому числу. Расчеты автора показывают, что учет этого вырождения приводит к величине энергии связи между моментами количества движения l (bahnimpulsen l) того же порядка, что и энергия обмена. Вероятно, эта энергия также ответственна за образование молекул. Кроме рассматривавшейся ранее спин-валентности существует еще другой вид валентности (line zweite Arte Valenz)- l-валентность для атомов с l>0. При этом могут насыщаться только валентности одинакового вида. Вероятно, здесь мы имеем более сложные соотношения, чем в случае спиновых валентностей" [49, с. 547]. В качестве примера использования концепции орбитальной валентности обратимся к молекуле В>2. Атом бора в основном состоянии характеризуется электронной конфигурацией 1s>22s>22p и термом