Секреты числа Пи. Почему неразрешима задача о квадратуре круга (Наварро) - страница 44

* * *

В конце 2002 года группа японских специалистов, возглавляемая Ясумасой Канадой, достигла результата, который теперь уже не так удивляет научный мир. Тем не менее последняя страница в этой истории еще не написана. Прогресс в этой области, кажется, не прекращается: в 2011 году был получен 10 000 000 000 050 знак числа π.

Сколь далек этот результат от предсказания Дэниела Шенкса (не путать с Уильямом Шенксом), который в 1983 году заявил, что вычисление миллиарда знаков π станет неприступной задачей! Сохраним для истории две формулы Мэчина, которые использовал Канада:

π/4 = 12∙arctg (1/49) + 32∙arctg (1/57) — 5∙arctg (1/239) + 12∙arctg (1/110443)'

π/4 = 44∙arctg (1/57) + 7∙arctg (1/239) — 12∙arctg (682) + 24∙arctg (1/12943).

Первая формула была открыта в 1982 году, а вторая была найдена Фредериком Карлом Штермером еще в 1896 году (опубликована в журнале Французского математического общества). Кто бы мог подумать, что эта формула будет использована для подобной задачи спустя столько лет! В математике никогда нельзя загадывать наперед: то, что сегодня кажется несущественным, завтра может стать основополагающим.

Возможно, помимо рекордных вычислений читателя заинтересуют не совсем традиционные вычислительные методы. Применение формулы



позволяет вычислить любой n-й знак π без необходимости рассчитывать все предыдущие. Увы, но результатом является только двоичное или шестнадцатеричное число. Формулы, подобные этой, создали Дэвид Бэйли, Питер Борвейн и Симон Плуфф. Они известны как формулы ВВР (по первым буквам фамилий их создателей). Считается, что эти формулы указывают на наступление новой эпохи в вычислениях.

Формула Фабриса Беллара (род. в 1972 году)



является производной от формул ВВР, и с ее помощью вычисления выполняются на 43 % быстрее.

При расчетах в двоичной системе находятся значения битов (0 или 1). Уже вычислен квадриллион знаков числа π. Используя эту формулу, мы можем определить, находится ли на определенной позиции 0 (возможны лишь два варианта: 0 или 1), не зная при этом предшествующих знаков. Совершенству нет предела, хотя реальная полезность подобной формулы представляется сомнительной.

В заключение упомянем, что уже найдены формулы, с помощью которых можно найти произвольный знак π в любой системе счисления.


ЦИФРА, ПОЛУЧЕННАЯ БЕЗ ФОРМУЛ

Колумнист журнала Scientific American Мартин Гарднер (1914–2010), известный писатель, полемист и математик, в 1966 году предсказал, что миллионным знаком π является 5. Это предположение основывалось на англоязычной версии Библии, в частности на 3-й книге, 14-й главе, стихе 16 (3-14-16), где используется магическое число 7 и седьмое слово содержит пять букв. Поэтому миллионный знак π после запятой (в те годы его значение еще не было вычислено) — должен быть равен 5. Никто не воспринимал это предположение всерьез, но в 1974 году были проведены необходимые расчеты, и, как и следовало ожидать, этот знак оказался равен 5. Мартин Гарднер не использовал ни одной формулы.