Секреты числа Пи. Почему неразрешима задача о квадратуре круга (Наварро) - страница 5

На протяжении веков все геометры пытались решить задачу о квадратуре круга, что равносильно построению отрезка длиной π с помощью циркуля и линейки, и всякий раз им удавалось найти лишь более точное приближенное значение и добавить еще один знак к десятичной записи π. Алгебраически задача о квадратуре круга площадью πr>2 равносильна нахождению квадрата со стороной l такого, что

πr>2 = l>2.

Иными словами, необходимо найти такое l, что

l = √(πr>2) = r√π,

что тождественно нахождению √π с помощью циркуля и линейки. Если значение √π найдено, то найти π с помощью циркуля и линейки элементарно, построив прямоугольный треугольник с катетами 1 и √π, а затем продлив перпендикуляр к гипотенузе полученного треугольника до пересечения с продолжением единичного отрезка.

В силу подобия треугольников ABD и ADC выполняется соотношение АВ/AD = AD/АС, откуда AD>2 = АВ∙АС.



Подставляя известное значение АВ = 1 и найденное AD = √(1 + π), получаем: 1 + π = АС, то есть ВС = π.

Если бы значение π было определено, было бы возможным найти √π и решить задачу о квадратуре круга. Но за этой простой формулировкой кроется длинная история, герои которой безуспешно пытались достичь заветной цели, всякий раз все ближе подходя к ней. Очередной талантливый геометр находил следующий знак π и тем самым неявно продвигал всю математику в целом на шаг вперед.


РАДИАН И π

В математике для измерения углов не используются градусы, минуты и секунды. Также не применяются грады и метрические минуты и секунды. Появление математического анализа (производных, интегралов и пр.) привело к тому, что начала использоваться более естественная единица измерения, пусть на первый взгляд она и кажется сложнее. Радиан определяется как угловая величина дуги, длина которой равна ее радиусу.



Так как длина всей окружности равна 2πr, то всю окружность можно представить в виде дуги в 2π радиан. Таким образом,

1 радиан — 360/2π градусов ~ 57°17′5''

Часто применяются следующие соотношения:

30° = π/6; 60° = π/3; 90° = π/2; 180° = π; 360° = 2π.


История числа π: гомеровская Греция

Из нескольких стихов Библии следует, что π = 3. В Библии это значение упоминается в описании постройки круглого алтаря, поэтому не следует расценивать это как попытку рассчитать его точное значение. Приведем цитату из 3-й книги Царств (7:23) для любопытного читателя: «И сделал литое [из меди] море — от края его до края его десять локтей — совсем круглое, вышиною в пять локтей, и снурок в тридцать локтей обнимал его кругом».

Проницательный читатель заметит, что значение числа π в этом тексте принято равным 3.