Фейнмановские лекции по физике 2 (Фейнман) - страница 39

будет суммой масс всех частиц, т. е. полной массой тела. Если теперь определить вектор R как

то, поскольку Мпостоянна, уравнение (18.3) перейдет в




Таким образом, внешняя сила равна полной массе, умно­женной на ускорение некоторой точки R; эта точка и называ­ется центром масс тела. Она расположена где-то в «середине» тела — некое среднее r, в котором различные r>i учитываются в зависимости от их важности, т. е. в зависимости от того, какую долю вносят они в полную массу.

Мы подробно обсудим эту важную теорему несколько позд­нее, а сейчас остановимся на двух примерах. Пусть на тело не действуют никакие внешние силы, скажем, оно плавает где-то в пустом пространстве. Оно может делать все, что ему угодно: крутиться, покачиваться, изгибаться, но при этом его центр масс, эта искусственно выделенная нами математическая точка, должен двигаться, с постоянной скоростью. В частности, если вначале этот центр покоился, то он так и будет покоиться все время. Поэтому если мы возьмем какой-то космический корабль со всеми его пассажирами, вычислим его центр масс и обна­ружим, что он стоит на месте, то можно быть уверенным, что центр масс так и останется на месте, если только на корабль не будут воздействовать какие-то внешние силы. Сам корабль, конечно, может немного перемещаться, но это потому, что пассажиры внутри корабля ходят взад и вперед. Так, если все пассажиры одновременно перейдут в носовую часть, то корабль немного подастся назад, чтобы среднее положение всех масс осталось в точности на том же самом месте.

Означает ли это, что в результате неподвижности центра масс ракета не может двигаться вперед? Конечно, нет, но, чтобы продвинуть вперед интересующую нас часть ракеты, мы что-то должны выбросить назад. Иными словами, если вна­чале ракета покоилась, а затем выбросила из сопла некоторое количество газа, то газ этот полетит назад, а сама ракета по­летит при этом вперед, однако центр масс останется точно на том же месте, где он был и раньше. Так что в ракете интере­сующая нас часть продвинется вперед за счет другой, которая улетит назад.

Второе замечание относительно движения центра масс. Его можно рассматривать отдельно от всех «внутренних» дви­жений тела и, следовательно, его можно не учитывать при изучении вращения. Собственно поэтому мы начали изучать вращения с центра масс.

§ 2. Вращение твердого тела

Поговорим теперь о вращении. Как известно, обычные предметы не вращаются просто так: они колеблются, вибри­руют, изгибаются. Поэтому, чтобы упростить рассуждения, рассмотрим движение несуществующего идеального объекта, который мы назвали