Фейнмановские лекции по физике 5 (Фейнман) - страница 37


Фиг. 3.12. Если СXС равно нулю, то циркуляция по замкнутой при­вой Г тоже нуль.

Криволинейный интеграл от C·dsна участке от (1) до (2) вдоль а должен быть равен интегралу вдоль b.

Фиг. 3.13. При переходе к пределу замкнутой поверхности поверхно­стный интеграл от (СXС)>n должен обратиться в нуль.


Криволинейный интеграл от точки (1) до точки (2) равен [j(2)- j (1)]. Если точки (1) и (2) совпадают, то наша теорема 1 [уравнение (3.8)] сообщает нам, что криволинейный интеграл равен нулю:


Применяя теорему Стокса, можно заключить, что


по любой поверхности. Но раз интеграл по любой поверхности равен нулю, то подынтегральное выражение обязано быть равно нулю. Значит,

Тот же результат был доказан в гл. 2, § 7 при помощи векторной алгебры.

Рассмотрим теперь частный случай, когда на маленький контур Г натягивается большая поверхность S(фиг. 3.13). Мы хотим посмотреть, что случится, когда контур стянется в точку. Тогда граница поверхности исчезнет, а сама поверхность превратится в замкнутую. Если вектор С повсюду конечен, то криволинейный интеграл по Г должен стремиться к нулю по мере стягивания контура (интеграл в общем-то пропорционален длине контура Г, а она убывает). Согласно теореме Стокса, поверхност­ный интеграл от (СXС)>n тоже должен убывать до нуля. Когда поверхность замыкается, то при этом каким-то образом в ин­теграл привносится вклад, который взаимно уничтожается с накопленным

ранее. Получается новая теорема:


Это нас должно заинтересовать, потому что у нас уже есть одна теорема о поверхностном интеграле векторного поля. Та­кой поверхностный интеграл равен объемному интегралу от дивергенции вектора, как это следует из теоремы Гаусса [уравнение (3.18)]. Теорема Гаусса в применении к СXС утверждает, что

(3.40)

Мы заключаем, что интеграл в правой части должен обращать­ся в нуль и что это должно быть справедливо для любого векторного по­ля С, каким бы оно ни было.

(3.41)

Раз уравнение (3.41) выполнено для произвольного объема, то в каждой точке пространства подын­тегральное выражение должно быть равно нулю. Получается, что


Тот же результат был выведен с помощью векторной алгебры в гл. 2, § 7. Теперь мы начинаем понимать, как все здесь прила­жено одно к другому.

§ 8. Итоги

Подытожим теперь все, что мы узнали о векторном исчисле­нии. Вот самые существенные моменты гл. 2 и 3.

1. Операторы д/дх, д/ду и д/dzможно рассматривать как три составляющих векторного оператора С; формулы, сле­дующие из векторной алгебры, остаются правильными, если этот оператор считать вектором



2. Разность значений скалярного поля в двух точках равна криволинейному интегралу от касательной составляющей гра­диента этого скаляра вдоль любой кривой, соединяющей пер­вую точку со второй: