Фиг. 3.12. Если СXС равно нулю, то циркуляция по замкнутой привой Г тоже нуль.
Криволинейный интеграл от C·dsна участке от (1) до (2) вдоль а должен быть равен интегралу вдоль b.
Фиг. 3.13. При переходе к пределу замкнутой поверхности поверхностный интеграл от (СXС)>n должен обратиться в нуль.
Криволинейный интеграл от точки (1) до точки (2) равен [j(2)- j (1)]. Если точки (1) и (2) совпадают, то наша теорема 1 [уравнение (3.8)] сообщает нам, что криволинейный интеграл равен нулю:
Применяя теорему Стокса, можно заключить, что
по любой поверхности. Но раз интеграл по любой поверхности равен нулю, то подынтегральное выражение обязано быть равно нулю. Значит,
Тот же результат был доказан в гл. 2, § 7 при помощи векторной алгебры.
Рассмотрим теперь частный случай, когда на маленький контур Г натягивается большая поверхность S(фиг. 3.13). Мы хотим посмотреть, что случится, когда контур стянется в точку. Тогда граница поверхности исчезнет, а сама поверхность превратится в замкнутую. Если вектор С повсюду конечен, то криволинейный интеграл по Г должен стремиться к нулю по мере стягивания контура (интеграл в общем-то пропорционален длине контура Г, а она убывает). Согласно теореме Стокса, поверхностный интеграл от (СXС)>n тоже должен убывать до нуля. Когда поверхность замыкается, то при этом каким-то образом в интеграл привносится вклад, который взаимно уничтожается с накопленным
ранее. Получается новая теорема:
Это нас должно заинтересовать, потому что у нас уже есть одна теорема о поверхностном интеграле векторного поля. Такой поверхностный интеграл равен объемному интегралу от дивергенции вектора, как это следует из теоремы Гаусса [уравнение (3.18)]. Теорема Гаусса в применении к СXС утверждает, что
(3.40)
Мы заключаем, что интеграл в правой части должен обращаться в нуль и что это должно быть справедливо для любого векторного поля С, каким бы оно ни было.
(3.41)
Раз уравнение (3.41) выполнено для произвольного объема, то в каждой точке пространства подынтегральное выражение должно быть равно нулю. Получается, что
Тот же результат был выведен с помощью векторной алгебры в гл. 2, § 7. Теперь мы начинаем понимать, как все здесь прилажено одно к другому.
§ 8. Итоги
Подытожим теперь все, что мы узнали о векторном исчислении. Вот самые существенные моменты гл. 2 и 3.
1. Операторы д/дх, д/ду и д/dzможно рассматривать как три составляющих векторного оператора С; формулы, следующие из векторной алгебры, остаются правильными, если этот оператор считать вектором
2. Разность значений скалярного поля в двух точках равна криволинейному интегралу от касательной составляющей градиента этого скаляра вдоль любой кривой, соединяющей первую точку со второй: