Евклид. Геометрия (Carrera) - страница 32


Параллельно с Лобачевским (это слово здесь как нельзя более кстати) венгерский ученый Янош Бойяи пришел к тем же самым выводам. Его отец Фаркаш пытался доказать постулат о параллельных почти всю свою жизнь, но так ничего и не добился. Хотя открытие Яноша было сделано одновременно с Лобачевским, он обнародовал его только в 1832 году, опасаясь реакции, которую могла вызвать такая математическая «ересь». По этой причине первенство открытия неевклидовой геометрии приписывается исключительно русскому математику.

Фаркаш в письме своему другу Карлу Фридриху Гауссу поинтересовался его мнением о трудах своего сына. На это Гаусс ответил со всей откровенностью, что не может похвалить Яноша, потому что это равносильно тому, чтобы похвалить себя самого, настолько совпадали их точки зрения по этому вопросу. Из этого письма понятно: Гаусс тоже пришел к выводу о том, что постулат о параллельных в том виде, в котором сформулировал его Евклид, не вытекает из остального содержания его труда, и разработал какие-то другие логичные геометрические системы. Решение Гаусса не публиковать свои открытия, несмотря на его авторитет в мире математики, позволяет понять, насколько рискованно было оспаривать учение великого Евклида. Гаусс был так осторожен, что даже отказался публично поддержать Бойяи и Лобачевского после издания их работ — как он говорил, из страха «стать посмешищем болванов».

Еще одна великая неевклидова геометрия — эллиптическая — окончательно сформировалась благодаря одному знакомому Гаусса, немецкому математику Бернарду Риману (1826-1866). В своем докладе «О гипотезах, лежащих в основании геометрии» (одном из самых знаменитых в истории науки) он изложил невероятно изящную геометрическую систему, в которой рассматривались исключительно искривления различных пространств и вытекающие из этого свойства. Риман доказал, что пространство Евклида — и, соответственно, вся евклидова геометрия — является частным случаем пространства с кривизной, равной нулю. В таком пространстве сумма углов треугольника равна 180°. Но бывают и другие пространства: например, сферическое, с положительной кривизной, в котором сумма углов треугольника больше 180°, или гиперболическое, с отрицательной кривизной, где, как мы уже видели, сумма углов треугольника меньше 180°.


Бога ради, прошу тебя, забудь об этом. Страшись этого так же, как чувственных страстей, потому что, как и они, оно может забрать все твое время, лишить тебя здоровья, душевного покоя и счастья.

Фаркаш Бояйи в письме к сыну Яношу, узнав, что тот написал работу