УКРАДЕННЫЙ ЕВКЛИД
Наполеон Бонапарт любил вывозить из завоеванных городов самые разные сокровища и украшать ими французские музеи. Например, так он поступил с Розеттским камнем и квадригой лошадей с собора Святого Марка в Венеции, которая несколько лет венчала Триумфальную арку. После вторжения в Италию Наполеон увез в Париж рукопись «Начал» Евклида, хранившуюся в библиотеке Ватикана. Несколько лет спустя, в 1804 году, парижанин Франсуа Пейрар, вдохновившись этим манускриптом, опубликовал «Начала евклидовой геометрии». Он обратил внимание на то, что этот текст основан не на версии Теона Александрийского, как все остальные, а на каком-то более древнем источнике, из-за чего можно предположить: он больше соответствует оригиналу. Позже рукопись была возвращена в библиотеку Ватикана.
XIX век в геометрии завершился появлением фундаментального труда гениального немецкого математика Давида Гильберта «Основания геометрии» (Grundlagen der Geometrie). С ним сформировался (хотя может показаться, что еще формируется) определенный подход к пониманию математики. Гильберт аксиоматизировал евклидову геометрию, но сделал это, не прибегая к геометрической интуиции. Он говорил:
«Справедливость аксиом и теорем ничуть не поколеблется, если мы заменим привычные термины «точка, прямая, плоскость» другими, столь же условными: «стул, стол, пивная кружка»!»
Разница между этими текстами Евклида и Гильберта состоит в использовании интуиции и наглядных соображений. Гильберт пытается избавиться от субъективности в науке. Для этого он прибегает к строгому формализму: аксиомы определяют отношения между геометрическими объектами (и они не требуют других определений, кроме самих этих аксиом), и на их основе, используя инструментарий формальной логики, создаются теоремы. При этом подходе невозможно вывести утверждение и его опровержение (на этой особенности основан метод доведения до абсурда), и непротиворечивость теории, построенной таким образом, подразумевает существование гео-
метрических объектов. Гильберт попытался создать твердую основу математики, после того как потерпел поражение подход, основанный на теории типов Рассела. Вдохновившись этим новым веянием в математической науке, выдающийся французский ученый Жан Дьёдонне во время семинара в 1969 году воскликнул: «Долой Евклида!» Этими словами он вовсе не принижал заслуги гениального александрийского математика, но стремился раскритиковать чрезмерное насаждение его геометрического учения в школах того времени. Так в начале 1970-х зарождалась наука, позже названная современной математикой, — новый подход к математике, имевший невероятный успех. Гильберт говорил: