Порядок из хаоса (Пригожин, Стенгерс) - страница 121

>1=N>2. По достижении этого состояния необратимая макроскопическая эволюция системы завершается. Разумеется, частицы будут по-прежнему переходить из одной половины ящика в другую, но в среднем в любой момент времени число частиц, движущихся в одном направлении, будет совпадать с числом частиц, движущихся в противоположном направлении. В результате движение частиц способно вызывать лишь малые, короткоживущие флуктуации вблизи равновесного состояния N>1=N>2. Таким образом, вероятностная интерпретация Больцмана позволяет понять специфическую особенность аттрактора, изучаемого равновесной термодинамикой.

На этом история не заканчивается, и всю третью часть нашей книги мы посвятим более подробному обсуждению затронутого круга проблем, а пока ограничимся несколькими замечаниями. В классической (и, как мы увидим в дальнейшем, квантовой) механике все определяется в терминах начальных состояний и законов движения. Каким же образом в описание природы входит вероятность? Обычно, отвечая на этот вопрос, ссылаются на то, что мы не знаем с абсолютной точностью динамическое состояние системы. Это — субъективистская интерпретация энтропии. Такая интерпретация была бы приемлема, если бы необратимые процессы мы рассматривали лишь как досадные помехи, соответствующие трению, или, более общо, как потери при функционировании тепловых машин. Но ныне ситуация изменилась. Как мы увидим, необратимым процессам отводится важнейшая конструктивная роль: так, без них была бы невозможна жизнь. Все это делает субъективистскую интерпретацию весьма спорной. В какой мере допустимо считать, что мы сами являемся результатом неполноты собственного знания, следствием того, что нашему наблюдению доступны лишь макроскопические состояния?

И в термодинамике, и в ее вероятностной интерпретации возникает асимметрия во времени: энтропия возрастает в направлении будущего, но не прошлого. Если мы рассматриваем динамические уравнения, инвариантные относительно обращения времени, то такая асимметрия представляется невозможной. Как мы увидим в дальнейшем, второе начало термодинамики представляет собой принцип отбора, совместимый с динамикой, но не выводимый из нее. Второе начало ограничивает возможные начальные условия, доступные для динамической системы. Следовательно, второе начало термодинамики знаменует радикальный отход от механистического мира классической или квантовой механики. Но вернемся к работам Больцмана.

До сих пор мы рассматривали изолированные системы, в которых число частиц и полная энергия заданы граничными условиями. Но объяснение Больцмана допускает обобщение на открытые системы, взаимодействующие с окружающей средой. В замкнутой системе, определяемой граничными условиями так, что ее температура