Тимошенко указывает [18,с.256] о возникновении критических колебаний вследствие эксцентриситета масс, возникших при изготовлении вала (биение поверхности).
Из приведенной выше теории ясно, что колебания возникают и для идеальной оси, то есть эксцентриситет сам по себе не вызывает поперечных колебаний, но, конечно может влиять на их величину.
По Тимошенко изгиб продолжается до тех пор, пока упругие силы не уравновесят центробежную силу.
Центробежная сила:
Упругая сила:
Приравнивая:
На невысокой угловой скорости с эксцентриситетом близким к нулю, прогиб незначителен. С увеличением ω прогиб увеличивается и при
становится
.
В этом случае угловая скорость является критической скоростью:
При превышении критической скорости формула равновесия:
(изменился знак между y и e с «+» на «+»).
Формула показывает, что с увеличением частоты, прогиб уменьшается.
После этого Тимошенко [18,с.258] принимает для анализа вала модель, в которой сам вал вращается вокруг своей оси (изогнутой оси) с частотой ω, и плоскость вала вращается вокруг прямой оси с такой же частотой ω.
В этом случае на вал будет действовать сила
Работа центробежной силы:
Из этой формулы получается такая же формула для критической частоты.
Оценивается влияние массы вала на значение критической частоты. Используется метод Релея. Задается вид кривой изгиба вала. Этим система вала преобразуется в систему с одной степенью свободы. Для вала с одним импеллером (η – прогиб):
Для нескольких импеллеров на валу:
Второй член левой части формулы относится к работе центробежной силы.
Тимошенко [18,с.260] рассматривает вал с 4 дисками:
Горизонтальные силы уравновешиваются, вертикальные силы приводятся к паре сил и силе в плоскости xy. Пара сил:
Все пары приводятся к паре
(θ – момент инерции мешалки относительно оси z).
Пара производит работу против искривления оси вала
Формула для определения критической частоты:
Тимошенко называет приведенную формулу общим решением о разыскании критической угловой скорости [18,с.260].
По изложенной выше теории поперечных колебаний можно определять собственные частоты колебаний валов для различных конструктивных компоновок валов насосов, а затем по приведенным выше формулам рассчитывать критические обороты вала.