Золотое сечение [Математический язык красоты] (Мир математики. т.1.) (Корбалан) - страница 2

В конце нашего увлекательного путешествия мы предложим список книг для желающих глубже познакомиться с миром золотого сечения.

Глава 1

Золотое сечение

Чувствам человека приятны объекты, обладающие правильными пропорциями.

Святой Фома Аквинский (1225–1274)


Что общего имеют такие, казалось бы, не связанные друг с другом природные явления, как расположение семян подсолнечника, элегантная спираль раковины улитки и форма Млечного Пути? Какой универсальный геометрический принцип скрыт в работах великих художников и архитекторов от Витрувия до Ле Корбюзье, от Леонардо да Винчи до Сальвадора Дали? Как бы это невероятно ни звучало, ответом на эти вопросы является просто число, известное на протяжении многих веков, которое постоянно появляется в различных творениях природы и искусства. В результате этому числу были даны такие имена, как «божественное сечение», «золотое сечение» и «золотое число». Записать это число практически невозможно, не потому, что оно слишком большое, — оно чуть больше единицы — а потому, что оно состоит из бесконечного ряда цифр, которые никогда не образуют повторяющуюся группу. Поэтому нам придется использовать математическую формулу для записи золотого сечения:

(1 + √5)/2 =~ 1,6180339887

Далее в этой главе мы увидим, как это математическое выражение было получено, но стоит признать, что, по крайней мере на первый взгляд, «божественное сечение» не выглядит особенно впечатляющим. Наметанный глаз, однако, сразу заметит что-то подозрительное, раз появился квадратный корень из пяти. Этот корень обладает рядом свойств, которые дали этому числу, как и многим другим подобным, странное название «иррациональных». Иррациональные числа — это особые числа, на которых мы также подробно остановимся.

Давайте попытаемся подойти к золотому сечению геометрически, чтобы найти его предполагаемое божественное свойство. Для этого построим прямоугольник, одна сторона которого в 1,618 раз длиннее другой; получится прямоугольник, в котором соотношение сторон представляет собой золотое сечение (точнее, его приблизительное значение). Вот что у нас получится:



Прямоугольник с таким соотношением сторон называется «золотым». На первый взгляд он может показаться нам обычным прямоугольником. Тем не менее давайте проделаем простой эксперимент с двумя кредитными картами. Положим одну из них горизонтально, а другую вертикально так, чтобы их нижние стороны находились на одной линии:



Если в горизонтальной карте мы проведем диагональную линию и продолжим ее, то увидим, что она пройдет в точности через правый верхний угол вертикальной карты — приятная неожиданность. Проделав этот эксперимент с двумя книгами одинакового размера, а именно с учебниками или книгами карманного формата, мы получим, вполне вероятно, тот же результат. Это свойство является характерным для двух «золотых» прямоугольников одинакового размера. Многие повседневные прямоугольные объекты созданы с таким соотношением размеров. Случайность? Может быть. Или, возможно, такие прямоугольники и другие геометрические формы, использующие золотое сечение, по каким-то причинам особенно приятны глазу. Согласившись с этим предположением, мы разделим мнение величайших художников и архитекторов. Об этом мы подробнее расскажем в четвертой главе. Не случайно в математике золотое сечение принято обозначать греческой буквой