Разделим отрезок на две части, тогда он будет разделен в крайнем и среднем отношении в терминах Евклида, иначе говоря, в «золотом» отношении, если x/1 = (1/x-1)
Если дроби равны, то равны и соответствующие произведения по правилу «крест-накрест»: a/b = c/d <=> a∙b = b∙c. Это приводит нас к квадратному уравнению:
x∙(x -1) = 1∙1 — > x>2 — x = 1
которое эквивалентно уравнению х>2 — х — 1 = 0. (1)
У этого уравнения есть два решения. Нас интересует лишь положительное:
x = (1 + √5)/2 =~ 1,618
Это и есть искомое число, которое мы обозначим Ф:
Ф = (1 + √5)/2 =~ 1,618
Так как решение уравнения (1) является отношением между длинами частей отрезка, оно не зависит от длины самого отрезка. Другими словами, значение золотого сечения не зависит от первоначальной длины.
Так как выражение содержит квадратный корень, число Ф будет иррациональным числом. Это значит, что мы не можем записать его в виде конечного десятичного числа. Более того, бесконечная строка десятичных знаков не содержит периодически повторяющихся групп цифр. Число Ф, таким образом, является непериодическим десятичным числом, которое невозможно вычислить до конца. Более точное вычисление числа Ф не имеет смысла, потому что оно особенно важно в геометрическом виде, а не в числовом. Достаточно сказать, что Ф = 1,618033988749894, потому что 15 знаков после запятой вполне достаточно для любых возможных расчетов.
Теперь возьмем калькулятор и сделаем несколько простых расчетов, взяв приближенное значение Ф с точностью до пяти десятичных знаков: Ф = 1,61803.
Сначала разделим единицу на Ф. Что мы получим? Число 0,61803; те же самые десятичные знаки после запятой. Оказывается, что 1/Ф = Ф — 1.
БОЛЕЕ ТОЧНОЕ ЗНАЧЕНИЕ Ф
Для любителей точности мы приводим значение золотого сечения с 99 знаками после запятой!
1,618033988749894848204586834365638117720309179805762862135448622705260462818902449707207204189391137484754088075386891752
12663386222353693179318006076672635443338908659593958290563832266131992829026788067520876689250171169620703222104321626954
86262963136144381497587012203408058879544547492461856953648644492410443207713449470495658467885098743394422125448770664780
9158846074998871240076521705751797883416625624940758906970400028121042762177111777805315317141011704666599146697987317613
560067087480710131795236894275219484353056783002287856997829778347845878228911097625003026961561700250464338243776486102
838312683303724292675263116533924731671112115881863851331620384005222165791286675294654906811317159934323597349498509040
947621322298101726107059611645629909816290555208524790352406020172799747175342777592778625619432082750513121815628551222