Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) (Басса) - страница 17

Бойяи и Лобачевский не пытались доказать пятый постулат Евклида исходя из других постулатов. Вместо этого они заметили, что постулат о параллельности прямых должен быть независимым от остальных. До них в отличие от многих своих предшественников этим же путем следовал Иоганн Ламберт. Ученые пришли к выводу, что независимость пятого постулата имеет большое значение: можно заменить его другим постулатом о параллельности прямых, возможно даже противоположным по смыслу, получить новую непротиворечивую систему постулатов и, как следствие, полностью непротиворечивую геометрию. Независимо друг от друга Бойяи и Лобачевский выбрали один и тот же альтернативный постулат и исследовали полученную неевклидову геометрию, приведя для ее теорем доказательства, аналогичные доказательствам Евклида.


АБСОЛЮТНАЯ ГЕОМЕТРИЯ

Абсолютная геометрия — это часть геометрии, которая выводится из первых четырех постулатов Евклида. Она называется абсолютной, так как является общей частью евклидовой и неевклидовой геометрий. Как мы уже показали, отличие между ними заключается лишь в пятом постулате о параллельности прямых.

Большое историческое значение имеет четырехугольник Саккери, рассмотренный Джироламо Саккери, и четырехугольник Ламберта, рассмотренный немецким математиком Иоганном Ламбертом. Они использовались для доказательства пятого постулата, но безуспешно. Саккери пытался показать, что отрицание пятого постулата ведет к противоречию, и тем самым доказать его. Однако он совершил ошибку, посчитав некоторые результаты неверными лишь на основании того, что они противоречили интуиции.

Ламберт, напротив, в посмертно изданной книге «Теория параллельных линий» (1766) приводит похожие рассуждения, что и Саккери, но не содержащие ошибок. По-видимому, он представлял, что можно сформировать геометрию без пятого постулата, так как писал: «Я склоняюсь к мысли, что гипотеза острого угла верна на некоторой сфере воображаемого радиуса». Этот немецкий математик также открыл несколько интересных формул, описывающих треугольники гиперболической геометрии, показав, что сумма углов в таких треугольниках всегда меньше 180°. По формуле Ламберта для этих треугольников справедливо следующее соотношение:

(π — (αβ + Y)) = CS>αβγ,

где

αβ + Y — сумма углов треугольника (выраженная в радианах);

С — положительный коэффициент пропорциональности, связанный с неизменной кривизной гиперболического пространства, в котором находится треугольник;

S>αβγ — площадь треугольника.

* * *

Использование нового постулата привело к созданию новой совокупности теорем и выводов, которую стали называть гиперболической геометрией. Лобачевский и Бойяи пришли к необычным выводам: через одну точку проходит бесконечно много прямых, параллельных данной; сумма углов треугольника меньше 180° для двух данных параллельных прямых существует третья прямая, перпендикулярная одной из них и параллельная другой, и так далее.