Путеводный нейрон. Как наш мозг решает пространственные задачи (Бонд) - страница 35

.

У ретроспленальной коры есть еще одна замечательная функция: отличать постоянные, полезные ориентиры от временных и ненадежных. Мир полон потенциальных ориентиров, но совершенно очевидно, что внутреннему компасу нет смысла настраиваться на то, что завтра исчезнет. Ретроспленальная кора сильнее реагирует на неизменные ориентиры, такие как деревья, ветряные мельницы и фонарные столбы, чем на автомобили, радугу и птиц на заборах[91]. Опять-таки в этом есть эволюционный смысл, поскольку потеря ориентации в дикой природе могла дорого обойтись нашим предкам; кроме того, это объясняет разницу в навигационных способностях современных людей. Исследования с помощью методов нейровизуализации показывают, что у людей, хорошо ориентирующихся в пространстве, ретроспленальная кора более чувствительная, чем у тех, кто ориентируется плохо, – и потому таким людям легче находить стабильные ориентиры. Элеонор Магуайр, которая исследует память и способности к навигации в Университетском колледже Лондона, говорила, что регулярно встречает здоровых людей, которые, как ни странно, «не способны определить стабильный ориентир, который никуда не исчезнет». Более того, она относит к этой категории и себя, признаваясь, что плохо ориентируется в пространстве, и приписывая этот недостаток плохой работе ретроспленальной коры. «Я постоянно теряю ориентиры. Поворачиваю за угол, уверенная, что увижу этот ориентир, но его нет! Конечно, он не исчез – его никогда там и не было! Я просто неверно его разместила»[92].


Одна из самых больших загадок когнитивной карты состоит в том, как взаимодействуют друг с другом разные элементы, которые помогают ее создать, – нейроны места, нейроны границы, нейроны направления головы, нейроны решетки и другие, о которых мы еще не знаем[93]. Мы точно знаем, что нейроны места получают информацию о геометрии пространства от нейронов границы, которые, в свою очередь, получают информацию об ориентации от нейронов направления головы, и еще нам известно, что нейроны решетки как-то связаны с расстоянием. Но эти механизмы настолько сложные, а эксперименты, требующие мониторинга отдельных нейронов диаметром около 0,2 миллиметра в мозге крыс или мышей, отнимают столько времени и сил, что общую картину получить пока не удается.

Не так давно Пол Дудченко и его аспирант Родди Гривс[94] выполнили серию экспериментов, чтобы понять, как нейроны пространства взаимодействуют друг с другом и какой вклад они вносят в формирование чувства места. Они сосредоточились на конкретной проблеме: почему крысы, как кажется, не могут отличить друг от друга одинаковые помещения, расположенные параллельно? Исследователи уже выяснили, что при перемещении между четырьмя прямоугольными помещениями, выглядевшими одинаково, нейроны места у крыс возбуждаются одинаково, и можно сделать вывод о том, что животные не различают эти помещения