Подобный подход был в прошлом столетии предложен К.Гауссом и Б.Риманом и является основой дифференциальной геометрии. Это сравнительно сложная математическая дисциплина, и мы здесь ограничимся качественными иллюстрациями основных ее идей, адресуя желающих познакомиться с ней детальнее к соответствующим учебникам и монографиям.[5]
Чтобы понять основные идеи геометрии поверхностей, обратимся вначале к привычным образам евклидовой плоскости двумерного пространства и двумерной сферы, рассматриваемой как автономное пространство. Известно, что основным свойством евклидова пространства является изотропия и однородность — полная эквивалентность его точек. Однако этого фундаментального свойства евклидова пространства недостаточно для его однозначного определения. Утверждение, что однородное и изотропное пространство есть пространство Евклида, не точно, поскольку этому свойству однородности и изотропии удовлетворяет также и сфера: все ее точки также эквивалентны относительно поворотов осей координат и их трансляции. Иначе говоря, глобальные относительно этих операций свойства обоих пространств одинаковы. Чтобы их количественно отличить, нужно ввести локальные характеристика, характеризующие различие плоского и сферического пространств. Иначе говоря, нужно определить величину, характеризующую кривизну сферической поверхности сравнительно с евклидовым пространством.
В рамках глобальной неевклидовой геометрии (как мы отмечали ранее) отличие геометрии от евклидовой характеризуется отклонением суммы углов треугольника от π или (что то же самое) отклонением от теоремы Пифагора. Рассмотрим теперь малые участки обеих пространств. Для них квадрат интервала ds**2 между двумя достаточно близкими точками представляется выражениями:
ds**2=dx**2 + dy**2 (плоскость) (1)
ds**2=r**2 sin**2 θ d FI + r**2 d FI**2 (сфера) (2)
r, θ, FI — соответственно радиус, полярный и азимутальные углы. Однако в косоугольных координатах квадрат интервала и плоскости имеет вид
s**2=dx**2 + dy**2 + 2 dx dy cos ALPHA
Хотя численное значение интервала остается неизменным (квадрат длины вектора — инвариант относительно замены системы координат), тем не менее форма (3) имеет более сложный вид, чем соотношение (1). Однако выражения (1) и (3) для квадрата интервала имеют лишь разные формы. Различие форм отражает разницу в выборе системы координат. Изменяя систему отсчета, можно во всей евклидовой плоскости интервал ds**2 свести к простой форме (1).
С выражением (2) интервала на сфере дело обстоит совсем по-другому. Форму (2) никаким преобразованием координат нельзя свести к простому соотношению (1) на всей сфере одновременно. Такую процедуру можно проделать лишь локально, выбирая направление на маленьком участке сферы так, чтобы θ=π/2. Однако при таком выборе система координат фиксируется применительно у этому участку сферы. Поэтому глобально для всей сферы соотношения (2) и (1) различаются, что и отражает неевклидовость сферы. Локально — в малом сферу можно аппроксимировать частью плоскости; глобально — в целом — невозможно.