Аксиомы, согласно Проклу, так же отличаются от постулатов, как теоремы - от проблем: "Выведение из принципов опять-таки распадается на задачи (проблемы) и положения (теоремы). Первые обнимают собою построение фигур, разделение, вычитание и прибавление и вообще все, что с ними можно делать (vornehmen); последние указывают существенные свойства... Если кто-то формулирует задачу так: вписать в круг равносторонний треугольник, то он говорит о проблеме; ибо возможно вписать в круг также и неравносторонний треугольник. И опять-таки: на данном, точно определенном, отрезке построить равносторонний треугольник - это тоже проблема, ибо можно построить также и неравносторонний. Но если кто-то формулирует положение, что в равнобедренных треугольниках углы при основании равны, то можно сказать, что он формулирует теорему, ибо невозможно, чтобы в каком-нибудь равнобедренном треугольнике углы при основании не были равны".
Таким образом, теорема - это теоретическое утверждение, в котором определенному объекту приписывается свойство, которое ему присуще с необходимостью.
Проблема же - это скорее практическая задача, которая выполняется определенным способом, и нужно найти эти способы, изобрести их и выполнить требуемое построение. Характерной особенностью задачи (проблемы) является то, что требуемое построение - отнюдь не единственно возможное: при заданных условиях можно осуществить и другое построение.
Теорема представляет собой утверждение, противоположное которому будет неистинным; к проблеме же определение "истинно - неистинно" не может быть применено.
Указав на различие между теоремами и проблемами, Прокл переходит к рассмотрению аксиом и постулатов. "Общим для аксиом и постулатов, - пишет он, - является то, что они не нуждаются ни в каком обосновании и ни в каком геометрическом доказательстве, но что они принимаются как известные и являются началами для последующего. Но аксиомы отличаются от постулатов так же, как теоремы от проблем. А именно, подобно тому как в случае теорем мы ставили задачу усмотреть и понять следствие из предпосылок, а в случае проблем получаем требование что-то найти и сделать, точно так же и в случае аксиом принимается то, что сразу видно и не представляет никаких затруднений для нашего необученного (ungeschulten) мышления. Но в случае постулатов мы пытаемся найти то, что легко получить и установить и относительно чего рассудок не затрудняется, не нуждается ни в каком сложном методе и ни в какой конструкции".
Если мы оставим в стороне весьма сложный и на протяжении многих веков дискутировавшийся среди математиков и философов вопрос о двух последних постулатах (4 и 5-й) и некоторых аксиомах (7 и 9-·), то с различением, которое здесь приводит Прокл, трудно не согласиться.