Математика. Поиск истины. (Клайн) - страница 28

/>5 ч. Интуиция обманывает нас; на весь путь туда и обратно гребец затрачивает в действительности час с четвертью.

Предположим, что, желая приготовить мартини с более пикантным вкусом, мы добавляем к кварте джина кварту вермута. Интуиция подсказывает, что получатся две кварты мартини. Правильный ответ и на этот раз расходится с интуитивно ожидаемым: мартини получится одна и девять десятых кварты. Аналогичным образом, при смешивании пяти пинт воды и семи пинт спирта не получится двенадцать пинт смеси. В обоих случаях молекулы располагается более экономно.

Обратимся теперь к проблеме времени. Мы можем говорить о секунде, следующей за данной секундой. Секунда — всего лишь продолжительность определенного интервала времени. Интуиция подсказывает нам, что за каждым мигом есть следующий. Но миг, или мгновение, — это не продолжительность интервала времени (вспомним хотя бы: «И в этот миг часы пробили один раз»). Нельзя не вспомнить и о парадоксе, впервые сформулированном Зеноном Элейским (V в. до н.э.). Летящая стрела в любой момент времени занимает определенное положение в пространстве. Когда стрела успевает переместиться из одного положения, в другое?

Рассмотрим другую задачу, тесно связанную с временем. Часы пробили шесть ударов за пять секунд. За сколько секунд эти часы пробьют двенадцать ударов? Интуиция подсказывает: за десять. Но шесть ударов разделены пятью паузами, а двенадцать ударов — одиннадцатью. Следовательно правильный ответ: за одиннадцать, а не за десять секунд.

Приведем еще несколько примеров того, как нас подводит интуиция. Рассмотрим два прямоугольника с равными периметрами. Должны ли они иметь равную площадь? На первый взгляд кажется, что должны. Но, как показывают нехитрые расчеты, равенство площадей отнюдь не обязательно. Естественно напрашивается вопрос: какой из прямоугольников с одинаковыми периметрами имеет наибольшую площадь? Допустим, мы сооружаем забор вокруг участка земли прямоугольной формы и всю его площадь намереваемся использовать под посевы. Ясно, что наиболее желательным в этом случае является прямоугольник, обладающий при данном периметре наибольшей площадью. Это — квадрат.

Аналогичная проблема возникает при рассмотрении двух коробок одинакового объема. Одинакова ли у них площадь поверхности? Предположим, что объем каждой коробки равен 100 м>3. Одна коробка имеет размеры 50×1×2 м>3, другая — 5×5×4 м>3. Соответственно площадь поверхности коробки составляет 204, а другой — 130 м>2. Разница весьма ощутимая.

Еще один пример того, как может заблуждаться наша интуиция, — история о молодом человеке, вставшем перед необходимостью выбора, какой из двух работ отдать предпочтение. Начальный оклад в обоих случаях одинаков: 1800 долл. в год, но в одном месте обещали ежегодную прибавку в 200 долл., а — в другом — каждые полгода 50 долл. Какое из предложений заманчивее? На первый взгляд кажется, что ответ очевиден: ежегодная прибавка в 200 долларов более весома, чем прибавка, дающая в год лишь 100 долл. Но займемся несложными расчетами и выясним, сколько долларов получит молодой человек на одной и другой работе за последовательные полугодия. На первой работе ему выплатят 900, 900, 1000, 1000, 1100, 1100, 1200, 1200…, на второй (с прибавкой в 50 долларов каждые полгода) — 900, 950, 1000, 1050, 1100, 1150, 1200, 1250…