Декарт, как мы уже говорили, рассматривал материю, движущуюся в пространстве и времени, как наиболее фундаментальное явление природы. Следуя ему, Галилей попытался выделить те характеристики движущейся материи, которые можно измерить, а затем установить между ними зависимости, выражаемые математическими законами. Анализируя явления природы, Галилей пришел к необходимости сосредоточить внимание на таких понятиях, как пространство, время, тяготение, скорость, ускорение, инерция, сила и импульс. В выборе этих понятий еще раз проявился гений Галилея, ибо важность их отнюдь не была очевидной, а соответствующие физические величины не всегда доступны прямому измерению. Такие свойства материи, например инерция, были настолько «скрытыми», что возникали даже сомнения в том, обладает ли ими материя. В существовании других можно было удостовериться только косвенно, на основании наблюдений. Другие понятия, например импульс, предстояло еще придумать. Но как бы то ни-было, введенные Галилеем понятия сыграли важную роль в раскрытии многих тайн природы.
Еще один аспект подхода Галилея к естествознанию оказался впоследствии не менее важным: исследуя природу, естествоиспытатель должен следовать какой-то математической модели. Галилей и его ближайшие последователи не сомневались, что им удастся найти законы природы, истинность которых будет казаться столь же неоспоримой, как аксиома Евклида о том, что «от всякой точки до всякой точки [можно] провести прямую линию» ([17], с. 14). Открытию таких аксиом физики должно было способствовать созерцание, экспериментирование, наблюдение, но коль скоро эти аксиомы познаны, истинность их должна быть интуитивно очевидной. Из таких интуитивно постигаемых аксиом Галилей, следуя в этом Декарту, надеялся логическим путем вывести ряд других истин, подобно тому как Евклид выводил теоремы из своих аксиом.
Однако в том, что касается метода выявления первых принципов, Галилей радикально расходился с древними греками, средневековыми мыслителями и даже с Декартом. До Галилея было принято считать (и это мнение разделял Декарт), что наиболее фундаментальным принципам мы обязаны нашему разуму. Задумавшись над тем или иным классом явлений, человеческий разум непосредственно постигает фундаментальные истины, о чем со всей очевидностью свидетельствует математика. Такие аксиомы, как «если к равным прибавляются равные, то и целые будут равны» ([17], с. 15) или «от всякой точки до всякой точки можно провести прямую линию» ([17], с. 14), мысль рождает сама по себе, достаточно лишь задуматься о числах или геометрических фигурах и истинность такого рода аксиом неоспорима. Греческие мыслители придерживались и некоторых физических принципов. Например, неоспоримым фактом считалось, что у всех объектов в мире должно быть свое естественное место. Состояние покоя казалось им более естественным, чем состояние движения. Так как небесные тела считались совершенными и повторяли свои движения через определенные промежутки времени, а окружность рассматривалась как совершеннейшая из кривых и допускала периодическое повторение движений, древние греки не сомневались, что небесные тела должны двигаться по круговым орбитам или в худшем случае по орбитам, представляющим собой комбинации окружностей. Убеждение в том, что фундаментальные принципы формируются разумом, не отрицало роли наблюдений в процессе выработки этих принципов, но наблюдения должны служить как бы толчком к постижению правильных принципов, подобно тому как созерцание знакомого лица заставляет нас вспоминать различные факты из жизни этого человека.