Мне думается, что сейчас неподходящее время для занятий вопросом о причинах ускорения в естественном движении, по поводу которого различными философами было высказано столько различных мнений; одни приписывали его приближению к центру, другие — постепенному частичному уменьшению сопротивляющейся среды, третьи — некоторому воздействию окружающей среды, которая смыкается позади падающего тела и оказывает на него давление, как бы постоянно его подталкивая; все эти предположения и еще многие другие следовало бы рассмотреть, что, однако, принесло мало пользы. Сейчас для нашего Автора будет достаточно, если мы рассмотрим, как он исследует и излагает свойства ускоренного движения (какова бы ни была причина ускорения).
([12], т. 2, с. 243-244.)
Итак, положительное физическое знание следует отделять от вопросов о причинной зависимости, а всякого рода предположения о физических причинах оставить в стороне. Галилей настоятельно советовал естествоиспытателям: не рассуждайте о том, почему происходит какое-то явление — описывайте его количественно.
Первая реакция на эту основополагающую идею Галилея, судя по всему, была отрицательной. В описаниях явлений с помощью формул большинство ученых видели лишь первый шаг. Истинную же задачу науки, по их убеждению, точно сформулировали последователи Аристотеля: пытаться найти физические объяснения наблюдаемых явлений. Даже у Декарта решение Галилея заняться поиском описательных формул вызвало протест: «Все, что Галилей говорит о телах, свободно падающих в пустоте, лишено всякого основания; ему следовало бы сначала определить природу тяготения». По мнению Декарта, Галилею следовало бы поразмыслить о первопричинах наблюдаемых явлений. Ныне, в свете последующего развития науки, мы понимаем, что стремление Галилея сосредоточить все усилия на количественном описании явлений было весьма глубокой и плодотворной идеей научной методологии. Смысл ее, по-настоящему уясненный лишь позднее, состоял в том, чтобы науку о природе как можно теснее связать с математикой.
Поиск формул, описывающих явления, в свою очередь вызывает вопрос: какие величины должны быть связаны формулами? Формула устанавливает взаимосвязь между численными значениями переменных физических величин. Значит, эти величины должны быть измеримыми. Еще один принцип, которому столь же неукоснительно следовал Галилей, заключался в том, чтобы измерять измеримое и делать измеримым то, что не поддается непосредственному измерению. Перед Галилеем встала проблема: как распознать те аспекты явлений природы, которые наиболее важны и могут быть измерены?