Апология математики, или О математике как части духовной культуры (Успенский) - страница 22

.

Итак, в каждой задаче на построение требуется указать некоторый способ построения. Когда такой способ предъявляется, как это было для задачи о середине отрезка, он, способ, обычно не вызывает сомнений. Но когда утверждается, что такого способа нет, как это утверждается для квадратуры круга или для трисекции угла, возникает необходимость уточнить, чего именно нет.

Всякий способ построения состоит в указании некоторой последовательности разрешённых операций. Последовательность эта - своя для каждой задачи. Сам же перечень разрешённых операций один и тот же для всех задач на построение. Он весьма невелик, и мы сейчас с ним познакомимся.

Прежде всего, это операции, связанные с линейкой. Читателя может удивить множественное число. Что ещё можно делать с линейкой, как не чертить прямую? А вот что: чертить луч, то есть полупрямую; чертить отрезок. Более точно: разрешается, приложив линейку к двум уже построенным точкам, начертить отрезок между этими точками; или луч, начинающийся в одной из этих точек и проходящий через другую; или прямую, проходящую через эти две точки. Господи! - воскликнет читатель, да это же и так ясно, стоило ли тратить слова на такую очевидность. Я благодарен читателю за это восклицание, потому что оно даёт возможность объяснить, почему стоило. Для этого рассмотрим ещё одну операцию, не менее простую для исполнения, чем проведение прямой через две точки, но, однако же, не входящую в перечень разрешённых: через данную точку провести касательную к данной окружности. Начертив окружность и взяв точку вне круга, читатель убедится, как легко провести касательную, используя реальную, деревянную или металлическую, линейку. Тем не менее в перечень разрешённых операций проведение касательной не включено. Мы только что прибегли к важному, как нам кажется, приёму обучения понятиям: надо не только приводить примеры вещей, входящих в объём вводимого понятия, но и контрпримеры вещей, в указанный объём не входящих. Так, чтобы на примерах объяснить, что такое чётное число, надо не только сказать, что числа 0, 2, 4, 6 и так далее являются чётными, но и сказать, что числа 1, 3, 5, 7 и так далее таковыми не являются; чтобы объяснить марсианину, что такое кошка, надо предъявить ему не только несколько кошек, но также и несколько собак, сказав, что они кошками не являются.

С циркулем связана такая операция. Установив иглу циркуля в уже построенную точку, а стило в другую уже построенную точку, разрешается начертить окружность. И даже более общо: установив иглу и стило в две уже построенные точки, разрешается, не меняя раствора циркуля, перенести иглу в третью уже построенную точку и начертить окружность.