На рисунке показано 8 полурегулярных мотивов узора, каждый из которых включает два или больше различных типов правильных много угольников, соединенных углами или сторонами. В каждом углу сходится одинаковое число образующих узор многоугольников
Таким образом, из недеформированных плоских фигур одного типа и размера могут быть сложены только пять Платоновых тел.
Большие возможности для комбинаций из плоских фигур открываются при составлении узоров из кафельных плиток (например, на полу в ванной комнате). В них бесконечно повторяются мотивы из равносторонних треугольников, квадратов и шестиугольников. А вот с пятиугольными плитками плиточник едва ли смог бы что-нибудь сделать. Их невозможно сложить в подобный узор.
Особые свойства равностороннего или равнобедренного треугольника (ибо квадрат состоит из двух равнобедренных, а шестиугольник из шести равносторонних треугольников) связаны с суммой его углов, которая составляет 180°. Сумма углов всякого n-угольника равна (n - 2) • 180°. У пятиугольника она будет (5-2) • 180° = 540°. Разделив 540 на 5, мы получим для каждого угла 108°. В точках, где сходятся все плитки, сумма всех углов должна составлять 360°. Но из углов, равных 108°, невозможно составить суммарный угол в 360°!
На рисунке показано 8 полурегулярных мотивов узора, каждый из которых включает два или больше различных типов правильных много угольников, соединенных углами или сторонами. В каждом углу сходится одинаковое число образующих узор многоугольников
Мы уже говорили, что узор из плиток можно составить только в том случае, если взять правильные треугольники, квадраты и шестиугольники. Однако это справедливо лишь тогда, когда прикладывается сторона к стороне и угол к углу. Но эти три вида многоугольников обнаружат различия, как только мы изберем другой мотив узора для нашего пола. Квадраты и равносторонние треугольники будут заполнять всю плоскость и в том случае, если они не примыкают углом к углу. В мотиве, выложенном шестиугольниками, между примыкающими углами и сторонами образуются зазоры. Но сами эти зазоры способствуют созданию новых восхитительных узоров. Для шестиугольников существуют четыре мотива их сочетания в единый узор с треугольниками и квадратами.
Кроме того, известны еще две комбинации, в которых участвуют только квадраты и треугольники, и две, в которых плюс к тому используются еще и восьми-, и двенадцатиугольники. Созданием «узоров для кафеля» увлекались многие математики.
При выкладывании узоров из кафельных плиток нет границ для фантазии