Проклятые вопросы (Радунская) - страница 29

За последние десятилетия рухнула не одна крепость царства мороза. Образовалась целая область науки — физика низких температур. В середине нашего века мы стали свидетелями рождения физики сверхнизких температур. Так учёные называют область, лежащую между десятой долей градуса и абсолютным нулём.

Многие лаборатории мира уже чувствуют себя как дома на этом абсолютном полюсе холода. Здесь особенно удобно исследовать тонкие особенности строения ядер, силы, приводящие к соединению атомов в причудливые конструкции решёток кристаллов, и многие явления, маскируемые тепловым движением материи.

Обнаружив новое явление, поначалу полное таинственности, экспериментаторы обычно не торопятся с выводами и с нетерпением ожидают, что же скажет по этому поводу теория. А бывает и так. Теория предсказывает новый эффект, новое явление, какое-то неожиданное свойство знакомого вещества, но эксперимент столь сложен и тонок, что проходит немало времени, прежде чем утверждения формул получат воплощение в жизни.

Сложная теория и тончайшая, ювелирная точность техники эксперимента — вот особенности этой области физики. Она обогащает не только наши знания о природе веществ, но уже даёт и практический выход.

Охота за тайнами низких температур в полном разгаре.

ПОЧЕМУ ВОЗНИКАЕТ СВЕРХПРОВОДИМОСТЬ?

На предыдущих страницах мы познакомились с историей сверхпроводимости. Замечательным открытием, порождённым извечной любознательностью человека.

«Что будет, если…» — подумал Каммерлинг-Оннес и погрузил сосудик с ртутью в жидкий гелий. И был вознаграждён. Он совершил одно из величайших открытий, обнаружил неведомое. Сверхпроводимость! Он заслуженно получил Нобелевскую премию, но около полувека никто не знал, почему и как вещество внезапно теряет электрическое сопротивление.

В 1935 году физик-теоретик Ф. Лондон предположил, что сверхпроводимость обусловлена квантовыми свойствами вещества. Так впервые была высказана мысль о том, что учёт квантовых закономерностей, управляющих процессами микромира, иногда определяет и закономерности явлений макромира, в которых участвуют большие коллективы микрочастиц. Он указал, что кусок металла в состоянии сверхпроводимости ведёт себя как огромная молекула. При обычных температурах электроны хаотически и независимо движутся внутри металла. При кратковременном присоединении к нему источника напряжения они приобретают дополнительное коллективное движение. Но оно быстро прекращается вследствие того, что каждый электрон взаимодействует с атомами металла независимо. Результатом является только небольшое нагревание куска металла из-за усиления хаотических тепловых колебаний.