Проклятые вопросы (Радунская) - страница 30

При низкой температуре квантовые свойства вещества допускают объединения электронов в общий коллектив. При этом для отдельного электрона, входящего в коллектив, изменение движения, вызванное его индивидуальным взаимодействием с отдельным атомом, невозможно. А весь коллектив «не реагирует» на такое «индивидуальное» взаимодействие. Здесь входит в действие принцип, действующий в разнообразных ситуациях: в единении сила, в разобщённости слабость.

Фриц Лондон и его брат Гейнц придумали формулы, описывающие главные особенности сверхпроводимости, обусловленной коллективным состоянием электронов. Затем они изучили взаимосвязь между сверхпроводимостью и магнитным полем. Сумели применить сверхпроводимость для создания сильных магнитных полей. Но вопросы — почему и как возникает коллективное состояние электронов? — оставались без ответа. Итог этому раннему периоду в понимании явления сверхпроводимости подвели в 1950 году Гинзбург и Ландау. Они обобщили теорию братьев Лондонов и создали эффективную феноменологическую (описательную) теорию, объясняющую сверхпроводимость как сверхтекучий поток электронов в веществе.

Первый шаг к пониманию деталей, приводящих к возникновению сверхпроводимости, сделал в 1956 году американский физик Л. Купер. Возможно, его подвели к этому идеи советского физика И. Е. Тамма, предположившего, что между двумя одинаковыми частицами может возникнуть притяжение, если они обмениваются между собой третьей частицей. Наглядной иллюстрацией (не имеющей реальной общности с явлениями микромира) могут служить два человека, по очереди кидающие друг другу мяч. Первый кинул — второй поймал. Второй кинул — первый поймал. Издали, когда мяч не виден, создаётся впечатление, что на этих людей действуют какие-то силы, не дающие им далеко отойти друг от друга и мешающие сблизиться вплотную.

Тамм хотел объяснить на этом примере, как возникают силы, удерживающие ядерные частицы внутри ядра, отведя роль «мяча «электрону. Однако расчёт показал, что обмен электронами не связан с силами, действующими в ядре.

В 1935 году японский физик X. Юкава сделал смелый шаг. Он предположил, что ядерные частицы обмениваются не электронами, а другими частицами, примерно в 200 раз более тяжёлыми, чем электрон. Но в то время такие частицы были неизвестны науке. Цифра «200» возникла из требования, чтобы теория соответствовала результатам опыта. Недостаток места не позволяет рассказать здесь увлекательную историю открытия мезона (так назвал Юкава свою гипотетическую частицу). Говоря коротко, первой была открыта частица с массой, примерно соответствующей предсказанию Юкавы, но, как оказалось впоследствии, не имевшая отношения к ядерным силам. Позже мезон Юкавы был обнаружен английским физиком С. Ф. Пауэллом.