Другая интересная тема дискуссий – широкое представительство у прокариот различных модулей сложных систем передачи сигналов, которые, как считалось ранее, характерны только для эукариот. В частности, сравнительный геномный анализ убедительно показал, что белковые серин-треонин-киназы и соответствующие фосфатазы широко распространены и диверсифицированы среди архей и бактерий и являются важным компонентом многогранной системы передачи сигналов у прокариот. Анализ большего количества бактериальных геномов неожиданно выявил гомологи белков, которые, как считалось ранее, имеются только у эукариот, где они вовлечены в известные пути передачи сигналов, такие как программируемая клеточная смерть (ПКС), или апоптоз. Эти белки включают протеазы из суперсемейства каспаз, семейство апоптозных АТФаз и семейство ГТФаз NACHT; все они вовлечены в различные формы ПКС растений и животных (Koonin and Aravind, 2002; Leipe et al., 2004). Как правило, эти белки обладают сложной мультидоменной модульной архитектурой, для которой характерно соединение каталитических доменов с разнообразными доменами, обеспечивающими специфичность белок-белковых взаимодействий. Эти предполагаемые сигнальные молекулы наиболее распространены в бактериях со сложными фазами развития, таких как цианобактерии, актинобактерии и миксобактерии, а также присутствуют у метаносарцин, единственной известной группы архей с относительно большими геномами и сложной морфологией. Детальное исследование функций этих белков еще предстоит, но есть предварительные признаки того, что у некоторых бактерий они могут быть вовлечены в ПКС (Bidle and Falkowski, 2004). Эти наблюдения показывают, что по крайней мере для некоторых из сложных сигнальных систем эукариот существуют аналоги и вероятные эволюционные предшественники среди бактерий. Мы еще вернемся к этим связям, когда будем обсуждать в главе 7 происхождение эукариот.
Наряду с вышеупомянутой приблизительно квадратичной зависимостью от размера генома сравнительный геномный анализ выявил огромную вариацию в сложности систем передачи сигналов среди бактерий и архей. Эта изменчивость, по-видимому, отражает разнообразие стилей жизни среди соответствующих организмов. Вариации в доле генов, ответственных за передачу сигналов, были количественно отражены в «бактериальном IQ», показателе, который пропорционален квадратному корню от числа белков передачи сигналов (учитывая квадратичное масштабирование) и обратно пропорционален общему количеству генов (Galperin, 2005). IQ отражает способность бактерий и архей отвечать на различные стимулы, приходящие из внешней среды. Соответственно, внутриклеточные симбионты (паразиты) имеют наименьшие значения IQ. Он лишь ненамного выше у организмов с компактными геномами, живущих в стабильной внешней середе, таких как морские цианобактерии, и существенно больше у организмов, живущих в сложной и переменчивой среде, даже у тех, которые обладают сравнительно небольшими геномами.