Физика для любознательных. Том 1. Материя. Движение. Сила (Роджерс) - страница 280

 = 5∙N. (Конечно, если одни обитатели лагеря съедают по 2 кг картофеля в неделю, а другие по 5 кг, то вся схема рассуждений теряет силу. Надо иметь в виду, что такая же опасность существует и при выводе научных законов).


Проверка пропорциональности

Каким образом можно убедиться в наличии прямой пропорциональности между величинами при анализе результатов измерений? В примере с картофелем эта зависимость[173] видна сразу. Нам же необходимо располагать простыми способами проверка в более запутанных случаях. Вот эти способы:

Способ I. Измеренное значение одной величины делят на значение другой и проверяют постоянство частного. В нашем примере:



и т. д., результат деления во всех случаях равен 2 кг на человека.

Это надежный способ проверки прямой пропорциональности. Разумеется, его можно применять двояким образом: если мы разделим число людей на массу картофеля, то получим еще один постоянный результат: >1/>4 человека на 1 кг.

Способ II.Графики. Французский математик и философ Декарт, который жил вскоре после Галилея, изобрел метод построения графиков в координатах x и y. Сегодня мы видим в графиках нечто само собой разумеющееся и читаем их так же легко, как печатный текст. Может даже появиться опасность, что, скажем, позволив газетам представлять все наши статистические данные в форме графиков, мы воспитаем целое поколение верхоглядов, отвыкших вдумываться в слова и цифры статистики. В то же время несколько поколений назад многие считали графики запутанными и сложными. В наше время нужно научиться аккуратно и быстро строить графики и так же быстро читать их. Для этого лучше пользоваться некоторыми стандартными масштабами и приучиться соблюдать принятую точность построения, оценивая десятые доли деления.

Графики служат превосходным средством выражения зависимости между величинами. Совокупность результатов наблюдения двух величин (например, числа людей и количества картофеля) можно представить в виде совокупности точек, откладывая в удобном масштабе значения одной, измеряемой величины по вертикали, а другой — по горизонтали. Расположение точек показывает зависимость между двумя измеряемыми величинами. На фиг. 294 построен график А по приведенным выше данным о количестве людей и потребляемого ими картофеля. Сами по себе эти данные не дают нам права вставлять промежуточные точки, как если бы мы знали потребности любого возможного (даже дробного) числа людей. Однако мы можем предположить, что промежуточные точки ничуть не менее законны, чем те, по которым мы построили график.