На плечах гигантов (Хокинг, Эйнштейн) - страница 129

>μν очень малы по сравнению с последней его компонентой, T>44. Однако это условие никак нельзя совместить с выбранными граничными условиями. После всего изложенного такой результат не вызывает удивления. Факт незначительности звездных скоростей позволяет заключить, что всюду, где имеются неподвижные звезды, потенциал гравитационного поля (в нашем случае √В) не может быть существенно больше, чем у нас. Последнее следует из статистических соображений так же, как и в теории Ньютона. Во всяком случае, наши вычисления привели меня к убеждению, что подобные условия вырождения для g в пространственной бесконечности не могут быть постулированы.

Неудача этой попытки указывает на две возможности: а) требовать, как в случае планетной проблемы, чтобы на пространственной бесконечности g>μν при надлежащем выборе системы координат стремились к значениям



или б) не устанавливать для пространственной бесконечности никаких фиксированных граничных условий. В каждом отдельном случае следует особо задавать g на пространственной границе рассматриваемой области так же, как мы привыкли это делать до сих пор, задавая начальные условия.

Возможность «б» не соответствует какому-либо решению проблемы. Она означает отказ от ее решения. Правомерность такой точки зрения нельзя отрицать – в настоящее время ее придерживается де Ситтер[18]. Но я должен признаться, что мне трудно было бы пойти на столь большие уступки в этом принципиальном вопросе. С этим я соглашусь только в том случае, если все усилия найти удовлетворительные граничные условия окажутся тщетными.

Возможность «а» неудовлетворительна во многих отношениях. Во-первых, такие граничные условия предполагают определенный выбор системы отсчета, что несовместимо с духом принципа относительности. Во-вторых, эта возможность ведет к отказу от требования относительности инерции. Действительно, инерция материальной точки с естественно измеренной массой m зависит от g, но последние лишь очень мало отличаются от постулированных значений на пространственной бесконечности. Благодаря этому, несмотря на то что материя (находящаяся на конечном расстоянии) влияет на инерцию, но все-таки не обусловливает последнюю. Если бы существовала только одна материальная точка, то она, согласно этому представлению, обладала бы почти такой же инерцией, как и в том случае, когда она окружена всеми прочими массами нашего реального мира. Наконец, против этого представления нужно выдвинуть те же статистические возражения, которые выше были указаны для теории Ньютона.