>1,
P>2 и
P>3 в порядке их первых посещений, то мы получим
.
Другие определения интервала и расстояния различают точки реки и точки водораздела. Обозначим через t' и t'' моменты первого и последнего посещения точки P. Точка P считается точкой реки, если отображение интервала
ограничено этой точкой и кривыми водораздела. Последовательные посещения точки
P располагаются друг против друга на противоположных берегах реки. Точка
P считается точкой водораздела, если отображение интервала
ограничено этой точкой и реками.
В случае, если кривая Пеано представлена как общая граница между деревом рек и деревом водоразделов, пути, соединяющие точки P>1 и P>2, расположенные на противоположных берегах реки (т. е. вдоль водораздела), включают в себя наикратчайший общий путь. Представляется разумным при измерении расстояния между точками P>1 и P>2следовать как раз этим путем. Если не считать некоторых исключений, размерность D как дерева рек, так и дерева водоразделов строго меньше 2 и строго больше 1. Следовательно, наикратчайший путь нельзя измерить ни длиной, ни площадью, однако в типичных случаях он имеет нетривиальную хаусдорфову протяженность в размерности D.
И еще. Очень важные дополнительные соображения относительно движений Пеано подробно изложены в пояснениях к нижеследующим рисункам.
Рис. 95. КВАДРАТИЧНОЕ ПОСТРОЕНИЕ КОХА С РАЗМЕРНОСТЬЮ D=2: ОРИГИНАЛЬНАЯ КРИВАЯ ПЕАНО, ПРОХОЖДЕНИЕ КВАДРАТА
Заполняющая плоскость кривая Пеано, представленная на этом рисунке, является оригинальной кривой Пеано. Невероятно краткий алгоритм Джузеппе Пеано был графически воплощен в работе Мура [435] (которая получила, пожалуй, чрезмерно высокую оценку во «Фракталах» 1977 г.). На нашем рисунке кривая Пеано развернута на 45 градусов — тем самым эта «блудная» конструкция оказывается возвращенной в лоно кривых Коха, т. е. теперь генератор всегда одинаково размещается на сторонах терагона, полученного на предыдущем этапе построения.
Инициатором здесь выступает единичный квадрат (черный внутри), а генератор выглядит следующим образом:
Поскольку генератор — самокасающаяся кривая, получаемые в результате построения конечные острова Коха представляют собой скопления черных квадратов, словно вырезанных из бесконечной шахматной доски. После n-го этапа построения терагон Коха выглядит как решетка из прямых с шагом r) = эта решетка заполняет квадрат, площадь которого равна 2, причем плотность линий быстро возрастает по мере того, как k→∞ (вполне достаточный пример этого однообразного узора показан на рисунке рядом с исходным черным квадратом).